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ABSTRACT

Plant phenotype descriptions are abundant both in literature and in community datastores.

Enabling basic aggregation, organization, and analyses over this data requires that phenotype de-

scriptions be represented in a computable format. One successful approach to this challenge has

been to develop standardized vocabularies and biological ontologies that can be used to annotate

phenotypes, allowing for the sparsity of the data to be reduced by inferring implicit information

about the annotated data, and enabling simple quantification of similarity between annotated data.

This type of structured curation has shown promise for enabling dataset-wide analyses on plant

phenotype descriptions, but the time and effort required for curation of individual phenotype de-

scriptions is a limiting factor in how scalable this approach is in light of the increasing volume of

available text data related to plant phenotypes. Computational approaches have the potential to

alleviate this problem by providing methods for representing phenotype descriptions and allowing

quantification of phenotype similarity. In this work, computational pipelines for representing and

comparing phenotypes are presented, and evaluated for their ability to predict biological relation-

ships between genes. Approaches from the natural language processing domain perform as well as

similarity metrics over curated annotations for predicting shared phenotypes. These approaches

also show promise both for helping curators organize large datasets as well as for enabling re-

searchers to explore relationships among available phenotype descriptions. A web application for

querying datasets of plant phenotype descriptions and identifying associated genes is also presented,

and example use cases are discussed.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Phenotypes can be defined as observable characteristics of living things that result from the

combination of, and interactions between, genetics and environment. Phenotypes accounts for an

incredibly diverse set of properties, including those crucial to understanding important biological

systems like diseases in humans, and agriculturally crucial traits like plant biomass and crop

species’ ability to resist attack by pathogens. Phenotypes can also be both described in a

quantitative sense (e.g., height is x meters) or qualitatively (e.g., the mutant line is shorter than

the wildtype). The range of information encompassed by phenotypes makes it a challenge to

organize this information in a way that is broadly usable for large-scale analyses, especially with

respect to already-existing data. This is not necessarily a problem for focused studies, such as a

genome-wide association study (GWAS) to identify loci related to one phenotype (e.g., plant

height) that was measured for the purpose of that study, but it becomes a profound challenge

when trying to provide phenomic data in a generally accessible manner, where the ways in which

the data will be used are not immediately known at the point that it is recorded. Being able to

compare phenotypes with one another in a large-scale way that is repeatable across different

datasets and over different types of analyses is the primary challenge that results from the fact

that phenotypic data is so diverse in how it is collected, described, curated, and stored.

Biological ontologies have been crucially important towards the goal of representing biological

data in standardized ways, not just for phenotypes specifically, but also chemical and compound

names, cellular components, gene functions, crop traits, and other types of biological entities

(Ashburner et al. (2000); Hastings et al. (2012); Cooper et al. (2013); Cooper et al. (2018);

Gkoutos et al. (2005)) The hierarchical nature of ontologies allows for the reduction in sparsity of

datasets by allowing a single annotation to inherit other related information (e.g., annotating a
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phenotype with the term leaf senescence implies that this phenotype is also related more

generally to aging). The shared use of common ontologies across studies and datasets allows for

observations or predictions made in one time and location to be used or referenced later by others

in a meaningful and unambiguous way.

In the case of plant phenotypes in particular, curating phenotype descriptions with ontology

terms has shown promise in that these annotations can be used to generate similarity values

between genes that are representative of known biological relationships, such as orthology or

membership in a biochemical pathway (Oellrich et al. (2015)). However, the reliance on curators

to produce these annotations from descriptions of phenotypes is a limiting factor, given the

volume of phenotype descriptions available. This fact emphasizes the importance of finding

computational solutions for representing and comparing text descriptions of phenotypes, and the

importance of understanding what biological relationships can or cannot be reliably captured

using these representations.

The work described in this dissertation is focused on describing this problem, describing

computational approaches that address this problem with and without using biological ontologies,

and characterizing these approaches in terms of where they are effective and where they are not.

This work builds on the work of many others, especially community databases and research

efforts that have organized or categorized phenotype descriptions of plants and annotations of

those data, which provides both the datasets used here to develop computational pipelines, and

also curated representations as a point of comparison in the analyses presented (notably including

the work of Oellrich et al. (2015); Lloyd and Meinke (2012); Berardini et al. (2015); Portwood

et al. (2019); Fernandez-Pozo et al. (2015); Cooper et al. (2018)). The computational pipelines

presented also build on the work of many others in the fields of semantic annotation, text mining,

natural language processing, machine learning, and artificial intelligence with respect to methods

for representing and modelling text in ways that can be used for comparing phenotype

descriptions and making predictions about gene relatedness (notably including the work of

Hoehndorf et al. (2011); Mikolov et al. (2013); Le and Mikolov (2014); Tseytlin et al. (2016)).
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1.2 Research Goals

The first research goal was to determine if the work of Oellrich et al. (2015) in producing a

dataset of phenotype annotations for comparing phenotypes to one another could be reproduced

using a computational pipeline rather than curation. Work towards this goal involved developing

a computational pipeline for assigning annotations to text, evaluating the ability of this pipeline

to produce similarity values between plant genes that were useful in recovering known biological

relationships in the same manner that was explored in the original work (Oellrich et al. (2015)),

and comparing against simple natural language processing approaches for representing and

comparing text.

The second research goal was to determine to what extent natural language processing

methods can be used to produce similarity values between plant genes that are reflective of

biological relationships in a generalized way, rather than with specific examples from a limited set

of plant genes or particular orthologous genes or pathways. Work towards this goal involved

analyzing the similarity values produced by a diverse set of natural language processing

approaches for representing and comparing text with respect to a number of existing resources

about gene relationships in terms of orthology, protein interactions, pathway membership, and

phenotypic category.

The third research goal was to provide researchers with a webtool that leverages the finding

that direct computation on natural language phenotype descriptions is useful for representing and

querying phenotypes so that it can be utilized to identify genes or groups of genes matching

particular descriptions. Work towards this goal involved developing the application itself, and

describing its utility with respect to the second research goal and specific examples of queries that

return related genes.

1.3 Dissertation Organization

Following this general introduction (Chapter 1), Chapters 2-6 contain either reformatted

published works or papers in preparation. Chapter 2 is a published book chapter that contains a
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general discussion on the utility of comparing phenotypes within and across species, and

introduces how computational approaches both have already and could in the future continue to

improve the scope and utility of these types of comparisons and analyses. Chapter 3 is a brief

conference proceedings publication that discusses progress on using computational approaches to

annotate phenotype descriptions with ontology terms. Chapter 4 is a published research article

presenting a pipeline for annotating phenotype descriptions with ontology terms, as well as

comparing phenotypes using simple NLP approaches. The utility of these methods in comparing

phenotypes both within and across species in comparison to using curated datasets for these tasks

is explored. Chapter 5 is a published perspectives paper discussing the potential for

computational methods to enable phenotype comparison, and the potential to use these

approaches for an alternative to traditional definitions of traits as an input to genome-wide

association studies. Chapter 6 is a researcher paper in preparation, which builds on the results of

the paper presented in Chapter 4 to more fully explore how generalizable these results are to a

larger dataset of phenotype descriptions, a broad range of methods for representing and

comparing text, and what types of biological relationships can be predicted from the assessed

phenotype similarities. Chapter 7 is a brief conclusion to this dissertation, including a summary

of the findings and a discussion of future research in this field.
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2.1 Abstract

Scientists are adept at comparing genomic sequences. The collection of more such data

promises to increase our ability to determine gene function, discover and describe biological

processes, and prioritize causative variants of interest that underlie disease response. Yet the

question remains: Can we compare phenotypes or traits of interest across disciplines in a manner

similar to how we compare genomic sequences? Here we present examples of ‘semantic reasoning’

computational methodologies that enable computation across organized formal phenotypic

representations. These methods facilitate the analysis of phenotype information across species,

domains of knowledge, people, and computers. We review representative examples of successful

semantic reasoning to recover known biological phenomena in medical and agricultural

applications. Necessary changes in how we collect, analyze, and share data to enable such

computations are presented, and database and analytic tool suites for these sorts of analyses are

described.

2.2 Background

Phenotypic variation is the raw material acted on by both natural and artificial selection; it

provides the diversity required for species to adapt and respond to changing environments.

Linking phenotypes to genotypes across evolutionarily distant lineages provides researchers with

the ability to predict phenotypic outcomes of genotypic changes, and to compare genetic strategies

that give rise to like phenotypes. This information in turn enables researchers to develop medical

and agricultural innovations and to assess and manage the organismal and community-level

variation critical to maintaining ecosystem processes and adaptive responses to climate change.
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Phenotypic data are extremely diverse, ranging in scope from expression profiles, to

quantitative information, to summarizing textual descriptions of development. Data can be

associated to individuals, populations, or species and can be described in comparative terms (e.g.,

mutant versus wild type) or absolute measurements (e.g., days to flowering). The documentation

of these data can be at a summary level (e.g., average height of plants studied) or measured (a

particular plant is measured to be 62 cm tall). For these reasons and myriad others, the

documentation, integration, representation, and accessibility of phenotype data is notoriously

challenging (reviewed in Deans et al. (2015)). Adding to the complexity, new high-throughput

measurements of phenotype can involve remote sensing, high-density imaging, and integration

with geolocation data. Because phenotypic data are so diverse, and the rates, volumes, and

complexities of data collection are only increasing, it is difficult to aggregate these complex

datasets for downstream analyses (reviewed in Thessen et al. (2015)).

In an effort to leverage the wealth of phenotypic data available for making important

biological inferences, McGary et al. (2010) developed a method of candidate gene discovery

involving phenologs, or orthologous phenotypes. As defined by the authors, phenotype A from

species A and phenotype B from species B are phenologs if their two sets of known causal genes

have a significant overlap in the form of orthologous genes. Once phenotypes A and B have been

identified as phenologs, the authors’ methodology identifies candidate genes as those genes which

are known to be causal in one species, but are not currently associated with that phenotype in the

other species. If Gene 1 is causal to phenotype A, then its ortholog in species B is a candidate

gene for phenotype B. The authors demonstrated the utility of this methodology by discovering

non-obvious model systems for human disease phenotypes, predicting specific novel candidate

genes associated with those phenotypes, and verifying selected predictions. For example, a

significant overlap in orthologous genes revealed a phenolog relationship between mammalian

abnormal angiogenesis and reduced rates of growth in lovastatin-treated yeast. A predicted

candidate gene for angiogenesis, SOX13 (known to be causal to the yeast reduced growth rate
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phenotype), was experimentally confirmed through knockdown studies in both mouse and human

cells.

The methodology of finding phenologs first proposed by McGary et al. (2010) relies on

previously known genotype to phenotype associations and the use of orthology relationships

between genes to reveal related phenotypes. Phenologs, however, may also be proposed based

solely on the characteristics of the phenotypes themselves, represented in the form of textual or

other data. Relying on textual descriptions rather than genotype to phenotype associations to

identify phenologs is advantageous in the case of phenotypes for which associated genotypes

(causal genes) are not known, or causal genes are involved in similar pathways between the

species but are not necessarily orthologous. Example phenolog sets that generate similar

phenotypes are kinesin motor proteins that, when mutated, cause trichome branching defects in

Arabidopsis and neuronal branching defects in mice (Figure 2.1), and some genes involved in

lesion formation in both humans and maize (Figure 2.2).

The lesion phenotypes shown in panels A and B of Figure 2.2 are caused by reduced activity

of uroporphyrinogen decarboxylase that leads to the accumulation of uroporphyrin and related

metabolites (Burns et al. (2008); Hu et al. (1998); Johal (2007)). The enzymes encoded by the

UROD and Les22 genes in humans and maize, respectively are 35% identical and so would be

readily discovered by the method of McGary et al. (2010) (GenBank: Accession No. NP 000365.3

and Kazic, unpublished). But approximately 54 other mutations producing lesion phenotypes in

maize have been confirmed so far, and for most neither the gene nor the biochemical functions it

encodes have been identified (Neuffer and Kazic, unpublished). All of these mutations produce

discontiguous patches of chlorotic or necrotic tissue on leaves, often in response to light or

developmental cues, and their morphology, behavior, spatial distribution, and time of onset are

sensitive to genetic background and environmental perturbations. For example, Figure 2.2 panel

C shows a classic oscillatory lesion phenotype produced by Les1 (Neuffer et al. (1975)). Mapping

has placed the locus on the short arm of chromosome 2, and no biochemical function has been

described (Neuffer and Pawar (1980)). Only searching over phenologs would discover Les1 and its
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phenotypes. Many other lesion mimic mutants of maize display these types of oscillations under

appropriate conditions, and these provide important clues to the underlying causal mechanisms

(Kazic, unpublished). Such searches would benefit considerably from also annotating other

important dimensions of the phenotype, such as its spatiotemporal oscillation and sensitivity to

ambient temperature and genetic background.

Regardless of the genotypic data associated with these phenotypes, they share characteristic

morphologies across the species that are readily summarized by images. It is likely that

morphological phenologs will eventually be directly discovered by sophisticated combinations of

image analysis and pattern recognition techniques that can be used on distributed image

databases, though these techniques are only just emerging and will require significant research.

However, many dimensions of these phenotypes, and many other non-morphological phenotypes,

are not neatly captured by an image. For example, the time of onset of a phenotype and the

environmental perturbations that trigger or modify it are far more accurately and compactly

expressed as text. Further, the genetic component that produces phenocopies is sharply reduced

by definition, but these phenotypes can be particularly revealing: Type I porphyria cutanea tarda

and lesion formation in response to pathogen infection both reveal important causal mechanisms.

For these non-morphological phenotypes and phenotypic dimensions, computational analysis of

phenotypic descriptions will be key to automating discovery of such associations, now and for the

foreseeable future.

To enable computational discovery methods, free text descriptions of phenotypes need to be

associated with standardized ontology terms which are placed in hierarchical directed acyclic

graphs. The analysis of ontology terms and the relationship graph in which they are placed is

called semantic reasoning; it is what allows machines to “understand” (reason over) domain

knowledge. The graph nature of the terms and relationships in an ontology allows metrics

utilizing graph theory to be applied to quantifying similarity between terms, and thus the

phenotype descriptions linked to them. Following the identification of phenologs through semantic

reasoning, the same method of candidate gene discovery suggested by McGary et al. (2010) can
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be applied. Multiple research groups are currently using semantic reasoning for novel candidate

gene discovery. Hoehndorf et al. (2011) predicted the association between the genes Adam19 and

Fgf15 with the Tetralogy of Fallot disease phenotype in humans, one result of the construction of

a network of phenotype similarity scores among 86,203 phenotypes across five different species

(yeast, fly, worm, mouse, zebrafish) called PhenomeNET (http://phenomebrowser.net/).

In seeking to construct a similar network to facilitate candidate gene discovery in plants,

Oellrich et al. (2015) developed and tested a workflow to curate and standardize existing plant

phenotype datasets. This approach employed curated data to demonstrate the feasibility of

semantic comparison across plant species. Data for six plant species, encompassing both model

species and crop plants with established genetic resources, were integrated and analyzed using a

common set of ontologies, annotation standards, formats, and best practices. The study focused

on mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.)

Heynh. (Arabidopsis), Zea mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel

medic or Medicago), Oryza sativa L. (rice), Glycine max (L.) Merr. (soybean), and Solanum

lycopersicum L. (tomato). Curated phenotypes from taxon-specific databases were converted into

a common format using the Ontologies for Plant Biology (described in Cooper et al. (2018)) that

include Plant Ontology (PO; Cooper et al. (2013)), Gene Ontology (GO; Ashburner et al. (2000)),

Plant Experimental Conditions Ontology (PECO; Cooper et al. (2018)), Chemical Entities of

Biological Interest (ChEBI; Hastings et al. (2012)) ontology, and Phenotype and Trait Ontology

(PATO; Gkoutos et al. (2005)). The ontology annotations were used to construct a matrix of

semantic similarity scores for all possible pairs of inter- and intra-specific genotypes. The

constructed ontology annotations representing each phenotype are referred to as EQ

(Entity-Quality) statements (Mungall et al. (2010)), as they are composed of ontology term(s)

representing a biological structure or process (entity), and term(s) representing an aspect or

modification of that entity (its quality (Gkoutos et al. (2018))).

From 2,866 genotypes yielding over 8 million possible combinations, 548,888 had non-zero

semantic similarity scores. A similarity score of 0 indicates no semantic overlap with respect to

http://phenomebrowser.net/
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the phenotype, while a similarity score of 1 indicates an identical semantic phenotype description

(and therefore equivalent sets of EQs). Of these, 44% of the non-zero semantic similarity scores

were below 0.1, indicating that many of the phenotypes show only a small overlap in their

description, while 13% of the genotype pairs with non-zero scores fell into the 0.9-1 range. This

indicates that for most of the genes the semantic similarity of their mutant phenotype descriptions

with other genes is low. Some of the very high scores (scores near 1) are likely artifacts due to

limited data curation. For example, if only some characteristics of genotypes have been annotated

in the form of EQ statements, two genotypes may appear artificially much more similar or

dissimilar than they would be had their phenotypes been annotated in full. Furthermore, not all

phenotype changes may be reported in the literature for a given genotype in the first place. It is

important to note that semantic similarity algorithms cannot compensate for such gaps in

reporting or in annotation. Results of the semantic similarity analysis are provided through the

Plant PhenomeNET (http://phenomebrowser.net/plant/) web interface, which was adapted

from PhenomeNET. For each genotype, a detailed page provides information about similarity

scores to any of the other genotypes as well as a link to an additional page providing the

phenotype assigned by the curator and those translated to use terms represented in the ontologies.

The semantic similarity dataset was evaluated for its ability to enhance predictions of gene

families, protein functions, and shared metabolic pathways that underlie informative plant

phenotypes. In one example, Oellrich et al. were able to use Plant PhenomeNET to identify a set

of maize gene models that participate in the initial reactions of flavonoid biosynthesis as part of

the phenylpropanoid biosynthesis pathway. This result indicates that reasoning across curated

phenotypes in plants is capable of recapitulating well-characterized biological phenomena and

hints that, for plant species that are not genetically well-characterized, the ontological reasoning

approach to predicting phenotypic associations can help with characterizing understudied species

and assist in forward genetics approaches.

In a second example, Oellrich et al. (2015) were able to place 2,741 EQ-annotated genes from

all six species into 1,895 gene families, of which 42 contain between 5 and 12 genes with EQ

http://phenomebrowser.net/plant/
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statements. These families were assessed for how often homologous genes have similar functions.

There were also 147 families containing EQ statements from two or more species, which allowed

the authors to assess how often functions are conserved between orthologs. For most families in

this sample, gene function was conserved or similar, but there were some cases in which annotated

phenotypes were quite different across orthologs.

2.3 Current Efforts

This method of comparing semantic similarity of mutant phenotypes has high potential for

semantic prediction, but requires consistent, coherent, and complete phenotype annotations that

computationally replicate the underlying biology of organisms, which in turn will require a much

larger, more complete dataset. Within the plant kingdom, the Planteome group has begun

working toward this goal.

The Planteome project (Cooper et al. (2018); http://www.planteome.org) provides a suite

of interconnected reference and species-specific ontologies associated with a database of plant

gene expression and function, traits, phenotypes, QTLs, and germplasm annotations spanning 95

plant taxa. The reference ontologies include the Plant Ontology, Plant Trait Ontology, and Plant

Experimental Conditions Ontology, developed by the Planteome project, as well as those

developed by collaborating groups, such as the GO, PATO, and ChEBI. An important feature of

the Planteome database is an integration of species-specific Crop Ontologies describing traits and

phenotype scoring standards being utilized by international plant breeding projects. In the

Planteome 2.0 Release (February 2017), the Planteome database includes trait ontologies for eight

crop species: maize (Zea mays), sweet potato (Ipomoea batatas), soybean (Glycine max), pigeon

pea (Cajanus cajan), rice (Oryza sativa), cassava (Manihot esculenta), lentil (Lens culinaris) and

wheat (Triticum aestivum). Planteome database users can access the ontologies and annotated

data from the project website and ontology browser, perform faceted searches for ontology terms,

annotations and bioentities, and download custom datasets for further analysis. Other tools

offered by the Planteome include web services (http://planteome.org/web_services) for

http://www.planteome.org
http://planteome.org/web_services
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ontology terms and annotated data, and the Planteome Noctua platform

(http://noctua.planteome.org/) for collaborative building of gene annotation models using

ontology terms.

The current methods of annotating phenotypes are largely manual, which limits high volume

data curation. Therefore, semiautomated methods dependent on data mining using reference

ontologies and natural language processing methods have started to become available (Wei et al.

(2013); Xu et al. (2016)). The Planteome project, among others, is working towards the goal of

using ontologies and neural network-based methods to identify phenotypes and plant characters

(phenotypes and traits) from both high-throughput phenotyping project data and plant

taxonomic sample collections. Within the context of vertebrates, the Phenoscape comparative

framework and Knowledgebase (Mabee et al. (2012); http://www.phenoscape.org) and see

Chapter 11) is another platform that, if adapted to include plant data, may enable plant-centric

analyses, as well as cross-domain analyses including ones such as those shown in Figure 2.1 and

Figure 2.2. The Phenoscape Knowledgebase (http://kb.phenoscape.org) currently combines

computable morphological phenotype descriptions from phylogenetic systematics publications on

comparative fish morphology and the vertebrate fin-to-limb transition, on the one hand, and from

mutant screens and other genetic perturbation experiments in vertebrate model organisms, on the

other. By way of example, Figure 2.3 shows the results of querying the Phenoscape

Knowledgebase with the search term “urod” (a gene associated with human porphyria cutanea

tarda, with phenotype shown in Figure 2.2A). Not only are orthologs in zebrafish, Xenopus,

mouse, and human returned by the search, in each species the phenotypes associated with UROD

are listed.

Evolutionary phenotype profiles for taxa and clades are linked to the phenotypes of mutated

genes in model organisms with the highest semantic similarity. This enables researchers to explore

conservation of phenotype in distantly related organisms and leverage knowledge from model

organisms to identify candidate genes for related phenotypes in non-model organisms.

http://noctua.planteome.org/
http://www.phenoscape.org
http://kb.phenoscape.org
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An additional goal of the Phenoscape project is the development of natural language

processing tools to increase the speed with which existing and new phenotypic data can be

rendered computable. Such tools include CharaParser (Cui (2012)) and Phenex (Balhoff et al.

(2010); Balhoff et al. (2014)) that enable semi-autonomous encoding of morphological descriptions

and facilitate mapping to ontology terms, respectively. Scaling the computable phenotype dataset

of the Plant PhenomeNET (6 taxa) to the size of the Phenoscape Knowledgebase (5,211 taxa)

through incorporation of existing and future natural language processing tools would drive the

prediction of novel candidate genes for crop plants, helping to extract as much information as

possible from the wealth of phenotypic data.

2.4 Future Work

What would it take to create a PlantPhenoscape? To build such a resource would require

phenotype data in the form of computable ontologies that are universal to all land plants,

functional information in the form of Gene Ontology (GO) annotations and gene expression data,

and evolutionary data in the form of phylogenetic relatedness among genes and species.

Combining phenomic with genomic data in a single query-based database would enable

researchers to advance understanding of the basic genomic mechanisms underlying plant

development and evolution. Connection and integration of these resources with existing and

emerging community data-centric projects (e.g., TAIR, MaizeGDB, Genomes to Fields, CyVerse,

DivSeek, Planteome etc.) would ensure broad access and longevity for developed resources.

Once assembled, a PlantPhenoscape Knowledgebase could be used to combine existing

phenotype data, including both natural variation and genetic mutant phenotypes, for agricultural

and model plants. These data could be assembled based on the ontology-building workflow

established by Oellrich et al. (2015). To be most useful, a PlantPhenoscape Knowledgebase

should include annotations for genes and gene orthologs including molecular function, biological

processes, and localization of gene products from GO and link these with the phenotype database

using mutant EQ phenotypes extracted from PhenomeNet, Planteome, and PATO.
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Once combined into a single database, the PlantPhenoscape Knowledgebase would allow

researchers to ask questions about the evolutionary and phenotypic relatedness of particular

structures, and to develop hypotheses concerning the genetic and developmental mechanisms

underlying these particular changes. Such a resource could lead to the development of a fast

semantic similarity engine for searching in real time across taxa or genotypes for shared

phenotypic profiles. A phenotypic profile could include particular morphological or developmental

descriptors or shared aspects of gene expression that result in phenotypic differences. While

Phenoscape’s existing architecture for semantic similarity tests and trait/character matrix

capabilities could be used for comparative phylogenetic analyses, the breadth of Phenoscape’s

computable data types could also be expanded to include species interactions, developmental

data, phenotype-genotype connections, gene network interactions, and genomic data.

By combining plant kingdom-wide ontologies for structural and anatomical characters with

linked phenotypic and genotypic data from across plant genetic systems, one could describe plant

diversity across many lineages and species and predict which genes and gene expression patterns

may be responsible not only for ecologically driven and evolutionarily significant changes in plant

form and function, but also for traits of interest in the world’s major crops.

As noted earlier, the construction of the existing Plant PhenomeNET similarity matrix

created by Oellrich et al. (2015) required manual creation of EQ statements from free-text

phenotype descriptions sourced from phenotypic databases and literature papers. This conversion

from human-readable phenotypic data to their computable representations demanded extensive

time and effort from domain experts for each of the plant species included in the project. In a

similar fashion, the entity-quality relations of the Phenoscape Knowledgebase are manually

generated from phenotypic and morphological data reported in literature and character state

matrices, albeit assisted through purpose-built auto-completion tools such as Phenex, mentioned

previously. The automation of this process converting human-readable phenotype descriptions

into computable EQ statements has the potential to reduce the number of human hours spent on

this task, allowing curators to focus primarily on ensuring the quality of the EQ representations
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rather than generating them. In addition, automating this process would expand the total

amount of phenotypic data that can be processed within a given time frame, proportionally

expanding the scope of the analyses that can be performed.

Information extraction, one of the problems at the core of parsing out EQ statements from

phenotype descriptions, is an established problem in the field of natural language processing

(NLP). Within the scope of information extraction, one of the most notable challenges is adapting

algorithms and techniques for specific biological domains. Whereas a general case NLP algorithm

may identify people or places, biological applications require recognition of items such as gene and

protein names (Settles (2005)), and more complex ideas such as disease-phenotype relations (Xu

et al. (2013)) and descriptions of mutations within genes (Horn et al. (2004)). These specific

information extraction algorithms have been applied and evaluated in the domain of biomedical

texts, but differences in taxa notation and vocabulary and the wide variety of phenotypic

information available (from anatomical phenotypes, to cellular concentrations, to biological

processes, etc.), makes generalization difficult.

CharaParser, the computational tool reported in Cui (2012), addresses this problem of

information extraction with respect to morphological phenotypes. From an input in a variety of

natural language formats, CharaParser produces character-state formulated phenotype

descriptions encoded in an XML file format. Words and phrases corresponding to characters and

character-states are identified through an unsupervised learning algorithm (Cui et al. (2010)),

preventing the need for the creation of domain-specific annotated training data. Instead, a small

number of seed characters and character-states are fed to the algorithm and used to identify

patterns leading to the identification of more character and character states in the input text

itself, in an iterative process. Following the unsupervised learning algorithm, the proposed

characters and character states extracted from the input text are verified, altered, or removed by

a human reviewer. The widely used NLP parsing tool Stanford Parser (Klein and Manning

(2003)) is then used in combination with sets of heuristic rules to identify the relationship

between characters and character states in the input text and produce the final XML
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representation of the phenotypes. CharaParser has been shown to perform well on plant data

sets, with 90% precision and recall at the sentence level on a North American Flora data set, with

slightly lower performance on an invertebrate data set (Cui (2012)).

In the XML representation of phenotypes produced by tools such as CharaParser, characters

and character-states are computationally identified and organized, but semantically they are

represented with the exact vocabulary with which they were represented in the input text. This

prevents comparison between multiple encoded descriptions, as is possible with EQ statements.

The task of representing predicted characters and character states in terms of entities and

qualities drawn from ontologies is referred to as concept coding, or concept mapping. More

generally, concept coding refers to mapping between any word or set of words and a

corresponding ontology term. As with other natural language processing problems, tools have

been built to address the problem of concept coding in the biomedical text domain. Notably,

Aronson et al. (Aronson (2001); Aronson and Lang (2010)) developed a concept coding algorithm

called MetaMap for mapping text to concepts in the UMLS (Unified Medical Language System)

Metathesaurus. The MetaMap algorithm accounts for possible variants of the input text

(synonyms, abbreviations, etc.), and scores their similarity to available ontology terms through

custom metrics, such as how many words were used to find the match, and how central those

words are to the meaning of the input text. Combining the functionality of an information

extraction tool like CharaParser, capable of identifying entity and quality-like terms in phenotypic

data, with a concept coder capable of mapping those terms to ontological concepts, would allow

for near-complete automation of EQ statement generation. Provided that the information

extraction algorithms can be developed to perform on a diverse collection of datasets, the variety

of EQ statements such a system could generate would only be limited by the availability of

ontologies. Anatomical, chemical, and biological process ontologies already provide the basis for

representing an extremely wide range of phenotypic information.
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2.5 Outlook

Given recent innovations in gene editing and the availability of tools to design specific changes

to gene regions of interest (reviewed in Brazelton Jr et al. (2015)), predictive phenomics can be

used to target desired phenotypes and test correlations between phenomes and genomes in any

species of interest, bringing functional genomics tools to bear on all phenotypes across many

species and even domains of life. Together, ontology-based phenotypic prediction, coupled with

simplified, broadly accessible gene editing capabilities, will not only advance our understanding of

basic biological mechanisms and principles, but has the potential to improve disease models and

agricultural innovation.
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2.8 Figures and Tables

Figure 2.1 Branching defects shared between mouse and Arabidopsis cells. Homma et al.

(2003) reported increased branching in cultured neurons of mouse Kinesin-13

mutant KIF2A (A) wild type and (B) mutant. A mutation in the Arabidopsis

ortholog KIN-13A (At3g16630) also shows increased trichome branching (C)

wild type and (D) mutant (Lu et al. (2005))
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Figure 2.2 Lesion formation in humans and maize. A: Porphyria cutanea tarda in hu-

mans[12]. B: Lesion formation in a Les22 mutant plant due to a mutation

in the UROD enzyme (image courtesy John Gray). C: The classic oscillatory

lesions displayed by Les1 heterozygotes (Neuffer and Pawar (1980))

Figure 2.3 Results of a query on the Phenoscape Knowledgebase for UROD. A: The search

term “urod” returns genes in zebrafish, Xenopus, mouse, and human. B: Click-

ing on the human UROD, the knowledgebase returns 29 phenotypes. C: A

sample of the list of phenotypes associated with human UROD is shown.
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3.1 Abstract

Phenotypic diversity analyses are the basis for research discoveries ranging from basic biology

to applied research. Phenotypic analyses often benefit from the availability of large quantities of

high-quality data in a standardized format. Image and spectral analyses have been shown to

enable high-throughput, computational classification of a variety of phenotypes and traits.

However, equivalent phenotypes expressed across individuals or groups that are not anatomically

similar can pose a problem for such classification methods. In these cases, high-throughput,

computational classification is still possible if the phenotypes are documented using standardized,

language-based descriptions. Conversion of language-based phenotypes to computer-readable

“EQ” statements enables such large-scale analyses. EQ statements are composed of entities (e.g.,

leaf) and qualities (e.g., increased length) drawn from terms in ontologies. In this work, we

present a method for automatically converting free-text descriptions of plant phenotypes to EQ

statements using a machine learning approach. Random forest classifiers identify potential

matches between phenotype descriptions and terms from a set of ontologies including GO (gene

ontology), PO (plant ontology), and PATO (phenotype and trait ontology), among others. These

candidate ontology terms are combined into candidate EQ statements, which are probabilistically

evaluated with respect to a natural language parse of the phenotype description. Models and
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parameters in this method are trained using a dataset of plant phenotypes and curator-converted

EQ statements from the Plant PhenomeNET project (Oellrich et al. (2015)). Preliminary results

comparing predicted and curated EQ statements are presented. Potential use across datasets to

enable automated phenolog discovery are discussed.

3.2 Introduction

Identifying phenologs (comparable phenotypes with hypothesized shared genetic origin)

within and between species enables candidate gene prediction for phenotypes of interest in

agriculture and medicine alike (McGary et al. (2010); Hoehndorf et al. (2011); Oellrich et al.

(2015)). For systems or species which are not anatomically similar, the use of image-based

phenotype data makes phenolog identification difficult. In these cases however, semantic analysis

of text-based representations of the phenotypes can provide enough information to identify

phenologs and generate hypotheses about the underlying biology of interest (Braun et al. (2018)).

Plant PhenomeNET is a phenotype similarity network composed of phenotypes from six

different model plant species that demonstrates the utility of this approach (Oellrich et al.

(2015)). In the construction of Plant PhenomeNET, curators converted text-based

representations of the phenotypes into sets of EQ statements, composed of entities (e.g., leaf) and

qualities (e.g., increased length), both represented by ontology terms. The similarity for each pair

of phenotypes was then calculated based on the overlap in the sets of ontology terms present in

each phenotype’s EQ statements. The goal of the work presented here is to automate the process

of converting text-based phenotypes to EQ statements using machine learning and natural

language processing techniques, so that such phenotype similarity networks can be generated and

expanded more easily.
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3.3 Methods

3.3.1 Plant PhenomeNET Dataset

The Plant PhenomeNET dataset of phenotype descriptions, corresponding atomized

statements, and corresponding curator-generated EQ statements is used as the source of both

training and testing data in this work. The atomized statements in this dataset are used as input

to the described methods, with the aim of automatically generating logical EQ statements which

are similar to those generated by the curators.

3.3.2 Mapping Text to Candidate Terms

The purpose of the first method employed is to map each input atomized statement to a

subset of the available ontology terms, which contains only those terms that match the text (may

be used to describe a portion of the text). To do this, random forest machine learning models

specific to each ontology are trained to classify pairs of text and ontology terms as either

matching or not, and are then used to produce probabilities with which the ontology terms may

be ranked for a given atomized statement. Features used to represent pairs of text and ontology

terms take into account semantic similarity, syntactic similarity, and contextual similarity with

respect to the ontology structure. The top ranking ontology terms are taken as candidate terms.

3.3.3 Composing Candidate EQ Statements

For each atomized statement, the candidate ontology terms are used to construct a set of all

possible candidate EQ statements. This is done by combining the terms from appropriate

ontologies into appropriate roles within the EQ statement structure. Some rules specific to the

ontologies used are enforced. For example, the inclusion of a relational PATO term as the quality

necessitates a secondary entity term.
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3.3.4 Evaluating Candidate EQ Statements

This process evaluates each candidate EQ statement that was composed in the previous step.

The atomized statement that was used to generate the candidate EQ statements is processed with

the Stanford CoreNLP pipeline, specifically to produce a dependency graph of the text. Each

candidate ontology term identified in the previous step is assigned to a node in the dependency

graph that is most similar to that ontology term (as measured by similarity metrics of high

importance in the random forest models). With each candidate ontology term assigned to a node

in the dependency graph, a given EQ statement can be represented by the shortest path in the

graph from the Entity term to the Quality term. Distributions of the length of these paths and

edge types along the paths are generated from the training data. The structural probability of a

candidate EQ statement is defined as the frequency with which its E-to-Q path appears in the

training data. The overall quality score q for an EQ is a weighted average of this structural

probability and the average probability of the terms, as output by the random forest models.

3.4 Results and Discussion

Random forest classifiers specific to each ontology were evaluated using standard precision

and recall curves (Figure 3.1). For the purposes of this evaluation, predicted probabilities for a

term are considered correct if they exceed the threshold value and that term is present in the

curated EQ statement for that atomized statement. In addition to binary precision and recall,

hierarchical similarity metrics are used to evaluate the average similarity between predicted and

curated terms with respect to the structure of the ontology (Figure 3.1). For each predicted EQ

statement, its similarity to the corresponding curated EQ statement was measured (Figure 3.2).

This preliminary work demonstrates the utility of using machine learning and natural language

processing techniques for automating or assisting the work of translating text-based phenotypes

into EQ statements. Our current and on-going work is focused on 1) adapting the methods to

handle more complex phenotypes which map to multiple EQ statements, 2) using and adapting
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existing tools to extract phenotype descriptions from the literature in order to build an expanded

dataset of text descriptions.
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3.6 Figures and Tables

Figure 3.1 Precision recall curve for predicted PATO terms of holdout atomized-state-

ments from Plant PhenomeNET. Average hierarchical precision and recall are

shown between all positive predictions and the closest correct PATO terms.
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Figure 3.2 Histogram of similarities (weighted Jaccard) between predicted and curated EQ

statements for holdout atomized statements from Plant PhenomeNET. Shaded

predictions have quality scores exceeding the learned quality threshold value.
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4.1 Abstract

Natural language descriptions of plant phenotypes are a rich source of information for genetics

and genomics research. We computationally translated descriptions of plant phenotypes into

structured representations that can be analyzed to identify biologically meaningful associations.

These representations include the entity–quality (EQ) formalism, which uses terms from

biological ontologies to represent phenotypes in a standardized, semantically rich format, as well

as numerical vector representations generated using natural language processing (NLP) methods

(such as the bag-of-words approach and document embedding). We compared resulting phenotype

similarity measures to those derived from manually curated data to determine the performance of

each method. Computationally derived EQ and vector representations were comparably

successful in recapitulating biological truth to representations created through manual EQ

statement curation. Moreover, NLP methods for generating vector representations of phenotypes

are scalable to large quantities of text because they require no human input. These results
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indicate that it is now possible to computationally and automatically produce and populate

large-scale information resources that enable researchers to query phenotypic descriptions directly.

4.2 Background

Phenotypes encompass a wealth of important and useful information about plants, potentially

including states related to fitness, disease, and agricultural value. They comprise the material on

which natural and artificial selection act to increase fitness or to achieve desired traits,

respectively. Determining which genes are associated with traits of interest and understanding the

nature of these relationships is crucial for manipulating phenotypes. When causal alleles for

phenotypes of interest are identified, they can be selected for in populations, targeted for deletion,

or employed as transgenes to introduce desirable traits within and across species. The process of

identifying candidate genes and specific alleles associated with a trait of interest is called

candidate gene prediction.

Genes with similar sequences often share biological functions and therefore can create similar

phenotypes. This is one reason sequence similarity search algorithms like BLAST (Altschul et al.

(1990)) are so useful for candidate gene prediction. However, similar phenotypes can also be

attributed to the function of genes that have no sequence similarity. This is how protein-coding

genes that are involved in different steps of the same metabolic pathway or transcription factors

involved in regulating gene expression contribute to shared phenotypes. For example, knocking

out any one of the many genes involved in the maize anthocyanin pathway can result in pigment

changes (reviewed in Sharma et al. (2011)). This concept is modelled in Figure 4.1, where,

notably, the sequence-based search with Gene 1 as a query can only return genes with similar

sequences, but querying for similar phenotypes to those associated with Gene 1 returns many

additional candidate genes.

High-throughput and computational phenotyping methods are largely sensor and image-based

(Fahlgren et al. (2015)). These methods can produce standardized datasets such that, for

example, an image can be analyzed, data can be extracted, and those data can be interrogated
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(Green et al. (2012); Gehan et al. (2017); Miller et al. (2017)). However, while such methods are

adept at comparing phenotypic information between plants that are physically similar, they are

limited in their ability to transfer this knowledge between physically dissimilar species. For

example, traits such as leaf angle vary greatly among different species, and therefore cannot be

compared directly. Moreover, where shared pathways and processes are conserved across broad

evolutionary distances, it can be hard to identify equivalent phenotypes. McGary et al. (2010)

call these non-obvious shared phenotypes phenologs. Between species, phenologs may present as

equivalent properties in disparate biological structures (Braun et al. (2018)). For example,

Arabidopsis KIN-13A mutants and mouse KIF2A mutants both show increased branching in

single-celled structures, but with respect to neurons in mouse (Homma et al. (2003)) and with

respect to trichomes in Arabidopsis (Lu et al. (2005)). Taken together, the ability to compute on

phenotypic descriptions to identify phenologs within and across species has the potential to aid in

the identification of novel candidate genes that cannot be identified by sequence-based methods

alone and that cannot be identified via image analysis.

In order to identify phenologs, some methods rely on searching for shared orthologs between

causal gene sets (McGary et al. (2010); Woods et al. (2013)). For example, McGary et al. (2010)

identified a phenolog relationship between “abnormal heart development” in mouse and “defective

response to red light” in Arabidopsis by identifying four orthologous genes between the sets of

known causal genes in each species. However, these methods are not applicable when the known

causal gene set for one phenotype or the other is small or non-existent. In these cases, using

natural language descriptions to identify phenologs avoids this problem by relying only on

characteristics of the phenotypes, per se. These phenotypic descriptions are a rich source of

information that, if leveraged to identify phenolog pairs, can enable identification of novel

candidate genes potentially involved in generating phenotypes beyond what has already been

described.

Unfortunately, computing on phenotype descriptions is not straightforward. Text descriptions

of phenotypes present in the literature and in online databases are irregular because natural
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language representations of even very similar phenotypes can be highly variable. This makes

reliable quantification of phenotype similarity particularly challenging (Thessen et al. (2012);

Braun et al. (2018)). To represent phenotypes in a computable manner, researchers have recently

begun to translate and standardize phenotype descriptions into entity–quality (EQ) statements

composed of ontology terms, where an entity (e.g., “leaf”) is modified by a quality (e.g., “increased

length”; Mungall et al. (2010)).1 Using this formalism, complex phenotypes are represented by

multiple EQ statements. For example, multiple EQ statements are required to represent

dwarfism, where the entity and quality pairs (“plant height,” “reduced”) and (“leaf width,”

“increased”) may be used, among others. Each of these phenotypic components of the more

general phenotype is termed a “phene.” Because both entities and qualities are represented by

terms from biological ontologies (fixed vocabularies arranged as hierarchical concepts in a directed

acyclic graph), quantifying the similarity between two phenotypes that have been translated to

EQ statements can be accomplished using graph-based similarity metrics (Hoehndorf et al.

(2011); Slimani (2013)). Such techniques for estimating semantic similarity based on arranging

concepts hierarchically in a graph have long been employed in the field of natural language

processing (NLP; e.g., Resnik (1999)) and, as applied to biological ontologies, have been useful in

applications from clustering gene function annotations for data visualization (Supek et al. (2011))

to assessing functional similarities between orthologous genes (Altenhoff et al. (2016)).

Oellrich et al. (2015) developed Plant PhenomeNET, an EQ statement-based resource

primarily consisting of a phenotype similarity network containing phenotypes across six different

model plant species, namely, Arabidopsis (Arabidopsis thaliana), maize (Zea mays ssp. mays),

tomato (Solanum lycopersicum), rice (Oryza sativa), Medicago (Medicago truncatula), and

soybean (Glycine max). Their analysis demonstrated that the method developed by Hoehndorf

et al. (2011) could be used to recover known genotype to phenotype associations for plants. The

authors found that highly similar phenotypes in the network (phenologs) were likely to share

causal genes that were orthologous or involved in the same biological pathways. In constructing

the network, text statements comprising each phenotype were converted by hand into EQ
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statements primarily composed of terms from the Phenotype and Trait Ontology (PATO; Gkoutos

et al. (2005)), Plant Ontology (PO; Cooper et al. (2013)), Gene Ontology (GO; Ashburner et al.

(2000)), and Chemical Entities of Biological Interest (ChEBI; Hastings et al. (2012)) ontology.

The success of this plant phenotype pilot project was encouraging, but to scale up to

computing on all available phenotypic data for each of the six species was not a reasonable goal

given that curating data for this pilot project took approximately 2 years and covered only

phenotypes of dominant alleles for 2,747 genes across the six species. More specifically, human

translation of text statements into EQ statements is the most time-consuming aspect of

generating phenotype similarity networks using this method. Automation of this translation

promises to increase the rate at which such networks can be generated and expanded. Notable

efforts to automate this process include Semantic Charaparser (Cui (2012); Cui et al. (2015)),

which extracts characters (entities) and their corresponding states (qualities) after a curation step

that involves assigning terms to categories and then mapping these characters and states to EQ

statements constructed from input ontologies. Other existing annotation tools such as NCBO

Annotator (Musen et al. (2012)) and NOBLE Coder (Tseytlin et al. (2016)) are fully automated,

relying only on input ontologies. Both map words in the input text to ontology terms without

imposing an EQ statement structure. State-of-the-art machine learning approaches to annotating

text with ontology terms also have been developed (Hailu et al. (2019)). These can be trained

using a dataset such as the Colorado Richly Annotated Full-Text corpus (CRAFT; Bada et al.

(2012)), but are not readily transferable to ontologies that are not represented in the training set.

In addition to using ontology-based methods, similarity between text descriptions of

phenotypes can also be quantified using NLP techniques such as treating each description as a

bag-of-words and comparing the presence or absence of those words between descriptions, or

using neural network-based tools such as Doc2Vec to embed descriptions into abstract

high-dimensional numerical vectors between which similarity metrics can then be easily applied

(Mikolov et al. (2013); Le and Mikolov (2014)). Conceptually, this process involves converting
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natural language descriptions into locations in space, such that descriptions that are near each

other are interpreted as having high similarity and those that are distant have low similarity.

In this work, we demonstrate that automated techniques for generating computable

representations of natural language can be applied to a dataset of phenotypic descriptions in

order to generate biologically meaningful phenotype similarity networks. See Figure 4.2 for an

overview of how phenotype similarity networks are computationally generated as an output when

text descriptions are provided as the input. We first show that these computational techniques

are limited in their capability to exactly reproduce the annotations and corresponding phenotype

similarity networks generated with hand-curation. However, we subsequently show that the

hand-curated network does not outperform networks built with purely computational approaches

on dataset-wide tasks of biological relevance, such as organizing genes by function and predicting

membership in biochemical pathways. Most importantly, we discuss how we can now use these

computational approaches to automatically generate new datasets necessary to identify

phenotypic similarities and predict gene function within and across species without requiring the

use of time-consuming and costly hand-curation.

4.3 Methods

4.3.1 Dataset of Phenotypic Descriptions and Curated EQ Statements

The pairwise phenotype similarity network described in Oellrich et al. (2015) was built based

on a dataset of phenotype descriptions across six different model plant species (A. thaliana, Z.

mays ssp. mays, S. lycopersicum, O. sativa, M. truncatula, and G. max). In that work, each

phenotype description was split into one or more atomized statements describing individual

phenes, each of which mapped to exactly one curated EQ statement (Table 4.1). The EQ

statements in this dataset were primarily built from terms present in PATO, PO, GO, and

ChEBI. For this work, we used this existing dataset as the source of genes and associated

phenotypic descriptions on which to test automated methods for assessing similarity networks
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between phenotypes and using the resulting phenotype similarity networks to perform

comparative analyses across the whole dataset to predict gene function.

4.3.2 Computationally Generating EQ Statements From Phenotypic Descriptions

For each phenotype and phene description in the dataset, we computationally generated

corresponding EQ statements without human interaction. To accomplish this, terms were first

annotated to each text description and then combined to form complete EQ statements. Two

different existing computational tools and a simple machine learning technique were used to map

ontology terms to text descriptions. Specifically, these were NCBO Annotator and NOBLE

Coder, which are tools for matching ontology terms to specific words in text, and a Näıve Bayes

bag-of-words classifier, which assigns terms to descriptions based on the observed frequencies of

term–word co-occurrence in a training dataset. The Oellrich et al. (2015) dataset of descriptions

and curated EQ statements was split into four groups such that any three groups of the dataset

were used to train a Näıve Bayes model that was then applied to the remaining group. The result

of applying these three annotation methods was a set of ontology terms from PATO, PO, GO, and

ChEBI assigned to each text description. Terms were then combined to form full EQ statements

by assigning default root terms where none were matched, such as the entity term whole plant

(PO:0000003), and organizing the matched terms into the different roles of the EQ statement by

removing overlapping terms and automatically applying compositional rules used by curators in

Oellrich et al. (2015). As an example, these rules include the fact that ChEBI terms cannot be

the primary entity. The EQ statements were scored based on how well the terms aligned with the

text description they were annotated to, so that the closest matching EQ statements for each text

description were output and used downstream to generate phenotype similarity networks. See the

Supplemental Methods section for a more detailed description of this process.
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4.3.3 Computationally Generating Numerical Vectors From Phenotypic

Descriptions

In addition to generating EQ statements for each phenotype and phene description in the

dataset, Doc2Vec was used for generating numerical vectors for each description. A model

pre-trained on Wikipedia was used (Lau and Baldwin (2016)). In these document embeddings,

positions within the vector do not refer to the presence of specific words but rather abstract

features learned by the model. A size of 300 was used for each vector representation, which is the

fixed vector size of the pre-trained model. In addition, vectors were generated for each description

using bag-of-words and set-of-words representations of the text. For these methods, each position

within the vector refers to a particular word in the vocabulary. Each vector element with

bag-of-words refers to the count of that word in the description, and each vector element with

set-of-words is a binary value indicating presence or absence of the word. In cases where phene

descriptions were used instead of phenotype descriptions, the descriptions were concatenated prior

to embedding to obtain a single vector.

4.3.4 Creating Gene and Phenotype Networks

Oellrich et al. (2015) developed a network with phenotypes as nodes and similarity between

them as edges for all the phenotypes in the dataset. For each type of text representations that we

generated with computational methods, comparable networks were constructed. For EQ

statement representations, Jaccard similarity either taking the structure and order of terms in the

EQ statement into account (referred to as metric S1) or ignoring the structure and treating the

ontology terms in the EQ statement as an unordered set (referred to as metric S2) were used to

determine edge values. See the Supplemental Methods section for a more detailed description of

these similarity metrics. For vector representations generated using Doc2Vec and bag-of-words,

cosine similarity was used. For the vector representations generated using set-of-words, Jaccard

similarity was used. These networks are considered to be simultaneously gene and phenotype

similarity networks because each phenotype in the dataset corresponds to a specific causal gene
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and a node in the network represents both that causal gene and its cognate phenotype. However,

two phenotype descriptions corresponding to the same gene are retained as two separate nodes in

the network, so while each node represents a unique gene/phenotype pair, a single gene may be

represented within more than one node.

4.4 Results

4.4.1 Performance of Computational Methods in Reproducing Hand-Curated

Annotations

We tested the ability of computational semantic annotation methods to assign ontology terms

similar to those selected by curators to phenotype and phene descriptions in the Oellrich et al.

(2015) dataset. Specifically, the ontology terms mapped by each method to a particular

description were compared against the terms present in the EQ statement(s) that were created by

hand-curation for that same description. Metrics of partial precision (PP) and partial recall (PR),

as well as the harmonic mean of these values (PF1) as a summary statistic, were used to evaluate

performance (Table 4.2). Metrics PP and PR were applied as in Dahdul et al. (2018); see the

Supplemental Methods section for a detailed description of these metrics.

NOBLE Coder and NCBO Annotator generally produced semantic annotations more similar

to the hand-curated dataset using phenotype descriptions as inputs than using the set of phene

descriptions as inputs, a result consistent across ontologies. We considered this to be

counter-intuitive because the phene descriptions are more directly related to the individual EQ

statements in terms of semantic content. However, the set of target ontology terms considered

correct is larger in the case of the phenotype descriptions because this set of terms includes all

terms in any EQ statements derived from that phenotype rather than a single EQ statement,

which could contribute to this measured increase in both partial recall and partial precision.

Accounting for synonyms and related words generated through Word2Vec models increased PR in

the case of specific annotation methods as the threshold for word similarity was decreased (from
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1.0 to 0.5), but did not increase PF1 in any instance due to the corresponding losses in PP

(Supplemental Figure 1).

NOBLE Coder and NCBO Annotator performed comparably in the case of each type of text

description and ontology, with NOBLE Coder using the precise matching parameter slightly

outperforming the other annotation method with respect to these particular metrics for these

particular descriptions. Both outperformed the Näıve Bayes classifier, for which performance

dropped significantly for the ontologies with smaller relative representation in the dataset (GO

and ChEBI), as might be expected. When the results were aggregated, the increase in partial

recall for PATO, PO, and GO terms relative to the maximum recall achieved by any individual

method indicates that the curated terms that were recalled by each method were not entirely

overlapping. This is as expected given that different methods used for semantic annotation

recalled target (curated) ontology terms to different degrees, as measured by Jaccard similarity of

a given target term to the closest predicted term annotated by that particular method. These sets

of obtained similarities to target terms were comparable between NCBO Annotator and NOBLE

Coder (ρ = 0.84 with phene descriptions and ρ = 0.86 with phenotype descriptions) and

dissimilar between either of those methods and the Näıve Bayes classifier (ρ < 0.10 in both cases

for either type of description) using Spearman rank correlation adjusted for ties.

These results indicate that automated annotation methods (NCBO Annotator, NOBLE

Coder, and Näıve Bayes classifier) do not reproduce the exact same ontology term annotations

selected by hand-curation for each phenotypic description, as expected. Given this result, we next

assessed how these differences between the hand-curated annotations and computationally

generated annotations translated into differences between the phenotype similarity networks

based on these annotations.

4.4.2 Comparing Computational Networks to the Hand-Curated Network

Oellrich et al. (2015) developed a network with phenotype/gene pairs as nodes and similarity

between them as edges for all phenotypes in the dataset. In this work, comparable networks were
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constructed for the same dataset using a number of computational approaches for representing

phenotype and phene descriptions and for predicting similarity. For the purposes of this

assessment, the network built from hand-curated EQ statements and described in Oellrich et al.

(2015) is considered the gold standard against which each network we produced is compared. The

computational and gold standard networks were compared using the F1 metric to assess similarity

in predicted phenolog pairs at a range of k values, where k is the allowed number of phenolog

pairs predicted by the networks (the k most highly valued edges). Results are reported through k

= 583,971, which is the number of non-zero similarities between phenotypes in the gold standard

network, and were repeated using phenotype descriptions and phene descriptions as inputs to the

computational methods (Figure 4.3). The simplest NLP methods for assessing similarity

(set-of-words and bag-of-words) consistently recapitulated the gold standard network the best

using phenotype descriptions, whereas the document embedding method using Doc2Vec

outperformed these methods for values of k 200,000 based on phene descriptions. The differences

in the performance of each method are robust to 80% subsampling of the phenotypes present in

the dataset.

These results illustrate that computational methods do not exactly reproduce the phenotype

similarity network built from the hand-curated EQ statements. However, this does not necessarily

mean that the hand-curated network is inherently more biologically meaningful. To assess how

useful each network is in a biological context, we next compared how the hand-curated network

and each computational network performed on the task of sorting genes into functional groups.

4.4.3 Computational Methods Outperform Hand-Curation for Gene Functional

Categorization in Arabidopsis

Lloyd and Meinke (2012) previously organized a set of Arabidopsis genes with accompanying

phenotype descriptions into a functional hierarchy of groups (e.g., “morphological”), classes (e.g.,

“reproductive”), and finally subsets (e.g., “floral”), in order from most general to most specific.

See Supplemental Table 1 in Lloyd and Meinke (2012) for a full specification of this hierarchy to
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which the genes were assigned, and Supplemental Table 2 in Lloyd and Meinke (2012) for a

mapping between genes and this hierarchical vocabulary. Oellrich et al. (2015) later used this set

of genes and phenotypes to validate the quality of their dataset of hand-curated EQ statements

by reporting the average similarity of phenotypes (translated into EQ statements) that belonged

to the same functional subset. We used this same functional hierarchy categorization and a

similar approach to assess the utility of computationally generated representations of phenotypes

towards correctly categorizing the functions of the corresponding genes and to compare this

utility against that of the dataset of hand-curated EQ statements. For each class and subset in

the hierarchy, the mean similarity between any two phenotypes related to genes within that class

or subset (“within” mean) was quantified using each computable representation of interest and

compared to the mean similarity between a phenotype related to a gene within that class or

subset and one outside of it (“between” mean), quantified in terms of standard deviation of the

distribution of all similarity scores generated for each given method. The difference between the

“within” mean and “between” mean (referred to here as the Consistency Index) for each

functional category for each method indicates the ability of that method to generate strong

similarity signal for phenotypes in this dataset that share that function (Figure 4.4). In the case

of these data, most computational methods using either phene or phenotype descriptions as the

input text were able to recapitulate the signal present in the network Oellrich et al. (2015)

generated from hand-curated EQ statements, and the simplest NLP methods (bag-of-words and

set-of-words) produced the most consistent signal.

In order to more directly compare each method on a general classification task, networks

constructed from curated EQ statements and those generated using each computational method

were used to iteratively classify each Arabidopsis phenotype into classes and subsets. This was

accomplished by removing one phenotype at a time and withholding the remaining phenotypes as

training data, learning a threshold value from the training data, and then classifying the held-out

phenotype by calculating its average similarity to each training data phenotype in each class or

subset and classifying it as belonging to any category for which the average similarity to other
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phenotypes in that category exceeded the learned threshold. Performance on this classification

task using each network was assessed using the F1 metric, where the functional category

assignments for each gene reported by Lloyd and Meinke (2012) were considered to be the correct

classifications (Table 4.3). The simplest NLP methods (bag-of-words and set-of-words)

outperformed the Oellrich et al. (2015) hand-curated EQ statement network on this classification

task in all cases, while using the computationally generated EQ statements or document

embeddings generated with Doc2Vec only outperformed the curated EQ statement network in

some cases.

Taken together, these results indicate that even though the computationally generated

networks are significantly different than the hand-curated network (Figure 4.3), they generally

perform equally well or better on tasks related to organizing Arabidopsis genes into functional

groups. We next examined how these networks compare on the task of predicting biochemical

pathway membership for specific genes, both within a single species and across multiple species.

4.4.4 Computational Methods Outperform Hand-Curation for Recovering Genes

Involved in Anthocyanin Biosynthesis Both Within and Between Species

Oellrich et al. (2015) illustrated the utility of using EQ statement representations of

phenotypes to provide semantic information necessary to recover shared membership of causal

genes in regulatory and metabolic pathways. Specifically, they showed that by querying a

six-species phenotype similarity network with the c2 (colorless2) gene in maize, which is involved

in anthocyanin biosynthesis, genes c1, r1, and b1 (colorless1, red1, and booster1), which are also

involved in anthocyanin biosynthesis in maize, are recovered. Querying in this instance is defined

as returning other genes in the similarity network, ranked using the maximal value of the edges

connecting a phenotype corresponding to the query gene and a phenotype corresponding to each

other gene in the network. There are 2,747 genes in the dataset, so querying with one gene

returns a ranked list of 2,746 genes. This result was included by Oellrich et al. (2015) as a specific

example of the general utility of the phenotype similarity network to return other members of a
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pathway or gene regulatory network when querying with a single gene. See Figure 4.1 for a

general illustration of this concept.

To evaluate this same utility in the phenotype similarity networks we generated using

computational methods and to compare their utility to that of the network from Oellrich et al.

(2015) generated using hand-curated EQ statements, we first expanded the set of maize

anthocyanin pathway genes to include those present in the description of the pathway given by Li

et al. (2019), and listed in Supplementary Table 1 of that publication. Of those genes, 10 are

present in the Oellrich et al. (2015) dataset (Table 4.4). Additionally, we likewise identified the

set of Arabidopsis genes known to be involved in anthocyanin biosynthesis (listed in Table 1 of

Appelhagen et al. (2014)) that were present in the Oellrich et al. (2015) dataset. This yielded a

total of 16 Arabidopsis genes (Table 4.5).

4.4.5 Recovering Anthocyanin Biosynthesis Genes Within a Single Species

Using each phenotype similarity network, each anthocyanin biosynthesis gene from one species

was iteratively used as a query against the network. The rank of each other gene in the set of

anthocyanin biosynthesis genes corresponding to the same species as the query was quantified.

We grouped the ranks into bins of width 10 for ranks less than or equal to 50 and combined all

ranks greater than 50 into a single bin. For each phenotype similarity network, the mean and

standard deviation of the number of anthocyanin biosynthesis genes in each bin were calculated

(Figure 4.5). The average number of pathway genes ranked within the top 10 across all queries

was greater for all computationally generated networks than for the network built from

hand-curated EQ statements, although variance across the queries was high. In general,

computational networks built from predicted EQ statements performed best for this task, whereas

the network built using the hand-curated EQs performed the worst. The networks constructed

using the numerical vector representations (set-of-words, bag-of-words, and Doc2Vec) were

intermediate in performance as a group (Figure 4.5).
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4.4.6 Recovering Anthocyanin Biosynthesis Genes Between Two Species

To determine whether the methods performed similarly both within and across species, we

repeated the analysis described in the previous section (Recovering Anthocyanin Biosynthesis

Genes Within a Single Species), but instead of quantifying the ranks of all anthocyanin

biosynthesis genes from the same species as the query gene, we quantified the ranks of all

anthocyanin genes that derived from the other species. In other words, Arabidopsis genes were

used to query for maize genes, and maize genes were used to query for Arabidopsis genes. As

shown in Figure 4.6, the phenotype similarity network constructed from hand-curated EQ

statements did not recover (provide ranks of less than or equal to 50) any of the anthocyanin

biosynthesis genes when queried with genes from the other species. Networks generated using the

set-of-words and bag-of-words approaches, or with Doc2Vec, performed similarly, recovering on

average less than one anthocyanin biosynthesis gene per query. Only networks built from

computationally generated EQ statements recovered an appreciable number of anthocyanin

biosynthesis genes on average across the queries between species (Figure 4.6).

4.5 Discussion

4.5.1 Computationally Generated Phenotype Representations Are Useful

A primary purpose for generating representations of phenotypes that are easy to compute on

(EQ statements, vector embeddings, etc.) is to construct similarity networks that enable the use

of one phenotype as a query to retrieve similar phenotypes. This process serves as a means of

discovering relatedness between phenotypes (potential phenologs) within and across species, thus

generating hypotheses about underlying genetic relatedness (reviewed in Oellrich et al. (2015)).

The computational methods discussed in this work were demonstrated to only partially

recapitulate the phenotype similarity network constructed by Oellrich et al. (2015) using

hand-curated EQ statements (Comparing Computational Networks to the Hand-Curated

Network). Despite the limited similarity between the network built from hand-curated
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annotations and the computationally generated networks, the computationally generated

networks performed as well or better than the hand-curated network (based on curated EQ

statements) in terms of correctly organizing phenotypes and their causal genes into functional

categories at multiple hierarchical levels (Computational Methods Outperform Hand-Curation for

Gene Functional Categorization in Arabidopsis). In addition, each computationally generated

network performed better than the hand-curated network for querying with either maize or

Arabidopsis anthocyanin biosynthesis genes to return other anthocyanin biosynthesis genes from

the same species (Recovering Anthocyanin Biosynthesis Genes Within a Single Species), a task

originally used to demonstrate the utility of the phenotype similarity network constructed in

Oellrich et al. (2015).

Moreover, the networks built from computationally generated EQ statements were useful for

recapturing anthocyanin biosynthesis genes from a species different than the species of origin for

the queried gene/phenotype pair. None of the other networks, including the network built from

curated EQ statements, exhibited this utility for this task (Recovering Anthocyanin Biosynthesis

Genes Between Two Species). This particular result indicates that high accuracy of constructed

EQ statements is not specifically necessary for tasks such as querying for related genes across

species because potentially inaccurate (computationally predicted) EQ statements generated a

more successful network for the task. Replicating these analyses with phenotype descriptions in a

different biological domain, such as vertebrates, would determine whether these results generalize

to additional species groups and datasets.

Taken together, these results over this particular dataset of phenotype descriptions suggest

that while the EQ statements generated through manual curation are likely the most accurate

and informative computable representation of a given phenotype in specific cases, other

representations generated entirely computationally with no human intervention are capable of

meeting or exceeding the performance of the hand-curated annotations on dataset-wide tasks such

as sorting phenotypes and genes into functional categories, as well as in the case of specific tasks

such as querying with particular genes to recover other genes involved in the same pathway.
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Therefore, in cases where the volume of data is large, the results are understood to be predictive,

and manual curation is impractical, using automated annotation methods to generate large-scale

phenotype similarity networks is a worthwhile goal and can provide biologically relevant

information that can be used for hypothesis generation, including novel candidate gene prediction.

4.5.2 Multiple Approaches to Representing Natural Language Are Useful

EQ statement annotations comprising ontology terms allow for interoperability with

compatible annotations from varied data sources. They are also a human-readable annotation

format, meaning that a knowledgeable human could fix an incorrect annotation by selecting a

more appropriate ontology term (a process that is not possible using abstract vector embeddings).

Their uniform structure also provides a means of explicitly querying for phenotypes involving a

biological entity that is similar to some structure or process (e.g., trichomes) or matches some

quality (e.g., an increase in physical size). Ontology-based annotations have the potential to

increase the information attached to a phenotype (through inferring ancestral terms which are not

specifically referred to in the phenotype description), but do not necessarily fully capture the

detail and semantics of the natural language description.

For this reason, future representations of phenotypes in relational databases for the purpose of

generating phenotype similarity networks across a large volume of phenotypes described in

literature and in databases likely should include both ontology-based annotations describing the

phenotypes, as well as the original natural language descriptions. Although the number of

phenotypes in the dataset used here and described in Oellrich et al. (2015) is relatively small, the

results of this work suggest utility of original text representations as a powerful means of

calculating similarity between phenotypes, especially within a single species. Computationally

generated EQ statements, which in the context of this study do not often meet the criteria for a

fully logical curated EQ statement, were demonstrated to be more useful in any other approach

for recovering biologically related genes across species.
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Ensemble methods are often applied in the field of machine learning, where multiple methods

are used to solve a problem, with a higher-level model determining which method will be most

useful in solving each new instance of the problem. It is possible that such an approach could be

applied to measuring similarity between phenotypes to generate a single large-scale network,

where similarity values are based on the best possible method to assess the text representations of

each pair of particular phenotypes.

4.5.3 Additional Challenges With EQ Statement Representation

Although ontology terms and EQ statements composed of ontology terms are an

information-rich representation of phenes and phenotypes, flexibility in which terms and

statements can represent a particular phenotype can limit the ability to computationally recognize

true biological similarity. The graph structures of the ontologies themselves, the metrics used to

assess semantic similarity, and the ambiguity inherent in both natural language and EQ statement

representations of phenes and phenotypes can all potentially contribute to this problem.

As one example in the Oellrich et al. (2015) dataset used here, the phene description

“complete loss of flower formation” was annotated with an EQ statement whose entity is flower

development, whereas the computationally identified entity using the methods described in this

work was flower formation. In this instance, the Jaccard similarity between these two ontology

terms was 0.286, which by comparison is less than the Jaccard similarity between flower

formation and leaf formation in the context of the ontology graph. This selected example

illustrates the possible discrepancies between true biological similarity and semantic similarity as

measured using graph-based metrics. Although each semantic similarity metric calculates this

value differently, those that use the hierarchical nature of the ontology are all constrained by the

structure of the graph itself.

Variation in how humans and computational methods interpret how a phenotype as a whole

should be conceptualized also has the potential to produce representations that obscure true

similarity, as measured by graph-based metrics. In another example from the Oellrich et al.
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(2015) dataset, the phene description “stamens transformed to pistils” was annotated with two

different EQ statements. The first EQ statement uses the relational quality has fewer parts of

type to indicate the absence of stamen in this phenotype, and the second uses the relational

quality has extra parts of type to indicate the presence of pistils in this phenotype. This

representation of the phenotype makes logical sense, but is not easy to generate computationally

because it abstractly describes the outcome of the transformation that is explicitly present in the

natural language description and is dissimilar from computationally generated representations

that focus on the explicit content (i.e., those which use the relational quality transformed to).

Finally, this study looked at a dataset consisting entirely of phenotypic descriptions in

English, and the generalizability of these methods to other languages is not discussed. It is

certainly likely that structural differences between languages would result in differences in how

certain methods of computing over descriptions in those languages perform, but such analysis is

outside the scope of this work.

4.5.4 Extending This Work to the Wealth of Text Data Available in Databases and

the Literature

We plan to apply the methods of semantic annotation, ontology-based semantic similarity

calculation, and natural language-based semantic similarity calculation to the wealth of text data

available in existing plant model organism databases and biological literature. For the latter,

doing so will involve the additional challenge of extracting phenotype descriptions as well as the

genes causative to those phenotypes as a separate identification and processing step. We plan to

leverage existing work in the areas of named entity recognition specific to genes (Wei et al.

(2015)) and relation extraction, as well as existing methods for extracting information related to

phenotypes such as those developed using vector-based representations of phenotype descriptions

(Xing et al. (2018)) and grammar-tree representations of phenotype descriptions (Collier et al.

(2015)). As the size of the applicable dataset is increased by these means, we will continue to

analyze the performance of methods from the domains of machine learning and NLP towards
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constructing biologically meaningful networks from this phenotypic data, including additional

techniques that were not included in the results presented here. For example, Sent2Vec

(Pagliardini et al. (2017)) is another technique for assessing text similarity that takes a different

approach from Doc2Vec for embedding text as numerical vectors and has been shown to perform

well when trained on life science corpora (Chen et al. (2019)). These next steps are anticipated to

enable researchers to begin to compute on phenotype descriptions directly and will drive a

promising future for forward genetics research approaches where phenotypes can be used for novel

candidate gene prediction as easily as sequence similarity searches can be used to identify

putative homologs from sequence data.

4.6 Data Availability Statement

The dataset of phenotype and phene descriptions and the corresponding hand-curated EQ

statements used in this work are available as supplemental data of Oellrich et al. (2015). The

hierarchical functional categorization of the set of Arabidopsis genes used in this work is available

as supplemental data of Lloyd and Meinke (2012). The code used to produce the results of this

work is available at github.com/irbraun/phenologs. Files necessary to reproduce the discussed

results, datasets used to generate figures presented in this work, and other supplemental files are

available at doi.org/10.5281/zenodo.3255020. This data repository also includes versions of

the previously described datasets available as supplemental data of Oellrich et al. (2015) and

Lloyd and Meinke (2012), for the purpose of making this study reproducible without any

additional external files.
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4.13 Figures and Tables

Figure 4.1 Conceptual comparison of querying with a gene sequence or its associated phe-

notypic description. Genes are shown as white ovals. Methods of searching for

related genes are shown as light gray boxes. Gray dashed arrows indicate the

path from the query gene to the set of genes that are returned from the search.

Solid black arrows indicate relationships between genes in a biological path-

way or gene regulatory network. Dashed black arrows indicate relationships

between the pathway or network and the resulting phenotype.
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Figure 4.2 Overview of computational pipelines used here to generate phenotype similar-

ity networks from text descriptions of phenotypes. Rounded white rectangles

represent data in the form of text descriptions as input or network nodes as

output. Rounded black rectangles represent the intermediate data forms that

are computable representations of text descriptions. These allow for quantita-

tive similarity metrics to be applied. Gray rectangles represent computational

methods carried out at each step. Single-headed arrows represent flow of data

through each pipeline. Double-headed arrows represent edges between nodes

in resulting similarity networks. Values next to double-headed arrows indicate

magnitude of phenotype similarity. One output network is created for each

computable representation, but only one example is shown here.

Table 4.1 Description of the Oellrich et al. (2015) dataset in terms of number of phenotype

descriptions, phene descriptions, and EQ statements.

Species Phenotypes Phenes EQ Statements

Arabidopsis 1385 5172 5172

Maize 117 373 373

Tomato 90 269 269

Rice 86 340 340

Medicago 40 149 149

Soybean 24 61 61

Example gene:

Arabidopsis

PKS2

(AT1G14280.1)

Phenotype:

short hypotcyl

and expanded

cotelydon under

hourly far red

pulses

Phene 1: short

hypocotyl

PO:0020100

(hypocotyl) +

PATO:0000574

(decreased length)

Phene 2:

expanded

cotyledon

PO:0020030

(cotyledon) +

PATO:0000586

(increased size)
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Figure 4.3 Comparison of phenolog pairs identified by predictive methods in comparison to

the Oellrich et al. (2015) dataset. The x-axis indicates the number of phenologs

pairs (highest valued edges in the phenotype similarity network) at each point.

The standard deviation of resampling with 80% of the phenotypes in the dataset

(network nodes) are indicated by ribbons for each method. Phene descriptions

(left) or phenotype descriptions (right) were used as the text input for each

particular method.
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Figure 4.4 Heatmap of Consistency Index. The difference between average similarity for

two phenotypes within a subset and one phenotype within and one outside, for

each functional subset defined in the dataset of Arabidopsis phenotypes, and for

each method of quantifying similarity between phenotypes is shown, with darker

cells indicating higher consistency within a subset. Differences are measured

in standard deviations of the distributions of similarities obtained for each

method. The meaning of subset abbreviations are specified in Supplemental

Table 1 of Lloyd and Meinke (2012). Methods are listed at left. Input text

for calculating similarities between the phenotypes were either derived from

phenotype descriptions (top) or phene descriptions (bottom). The far right

column in the heatmap refers to an average Consistency Index for a given

method across all subsets.
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Figure 4.5 Rankings of anthocyanin biosynthesis genes in either maize (A) or Arabidopsis

(B) upon querying phenotype similarity networks generated with genes from

the same species. Phenotype networks are organized by the method used to

generate them (columns) and by whether those methods were applied to phe-

notype or phene descriptions (rows). Rank value specifies a range of rankings

for each bar in the plots (1–10, 11–20, etc.) and rank quantity indicates the

average number of anthocyanin biosynthesis genes that were ranked in a given

range over all queries. Error bars indicate one standard deviation of the rank

quantities in each range over all queries.
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Figure 4.6 Rankings of anthocyanin biosynthesis genes in either maize (A) or Arabidopsis

(B) upon querying phenotype similarity networks generated with genes from

the other species. Phenotype networks are organized by the method used to

generate them (columns) and by whether those methods were applied to phe-

notype or phene descriptions (rows). Rank value specifies a range of rankings

for each bar in the plots (1–10, 11–20, etc.) and rank quantity indicates the

average number of anthocyanin biosynthesis genes that were ranked in a given

range over all queries. Error bars indicate one standard deviation of the rank

quantities in each range over all queries.
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Table 4.2 Performance metrics for semantic annotation methods.

Annotator Ontology n Phenotype Description Phene Descriptions

PP PR PF1 PP PR PF1

NOBLE Coder (precise) PATO 7882 0.641 0.627 0.634 0.601 0.572 0.586

NOBLE Coder (precise) PO 5634 0.622 0.380 0.472 0.546 0.294 0.382

NOBLE Coder (precise) GO 1505 0.514 0.521 0.517 0.510 0.514 0.512

NOBLE Coder (partial) PATO 7882 0.412 0.748 0.532 0.375 0.689 0.486

NOBLE Coder (partial) PO 5634 0.309 0.758 0.439 0.269 0.659 0.382

NOBLE Coder (partial) GO 1505 0.102 0.846 0.182 0.091 0.839 0.165

NCBO Annotator PATO 7882 0.640 0.619 0.629 0.598 0.563 0.580

NCBO Annotator PO 5634 0.550 0.259 0.352 0.458 0.170 0.248

NCBO Annotator GO 1505 0.478 0.433 0.454 0.480 0.424 0.450

NCBO Annotator ChEBI 775 0.429 0.888 0.579 0.431 0.913 0.586

Näıve Bayes Classifier PATO 7882 0.517 0.394 0.447 0.642 0.484 0.552

Näıve Bayes Classifier PO 5634 0.474 0.258 0.334 0.636 0.429 0.512

Näıve Bayes Classifier GO 1505 0.091 0.073 0.081 0.155 0.157 0.156

Näıve Bayes Classifier ChEBI 775 0.035 0.031 0.033 0.001 0.001 0.001

Aggregate Annotations PATO 7882 0.412 0.798 0.543 0.383 0.815 0.522

Aggregate Annotations PO 5634 0.351 0.809 0.489 0.304 0.831 0.445

Aggregate Annotations GO 1505 0.107 0.839 0.190 0.090 0.839 0.163

Aggregate Annotations ChEBI 775 0.366 0.890 0.519 0.305 0.913 0.457

Table 4.3 Evaluation (F1 scores) for each method used to categorize Arabidopsis genes by

function.

Method Phenes Phenotypes

Class Subset Class Subset

Curated EQs 0.470 0.359 0.470 0.359

Pred EQs S1 0.472 0.472 0.369 0.320

Pred EQs S2 0.504 0.413 0.437 0.368

Set-of-words 0.613 0.447 0.587 0.426

Bag-of-words 0.595 0.423 0.549 0.409

Doc2Vec 0.455 0.331 0.486 0.377
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CHAPTER 5. COMPUTING ON PHENOTYPIC DESCRIPTIONS FOR

CANDIDATE GENE DISCOVERY AND CROP IMPROVEMENT

Ian R. Braun1,2, Colleen F. Yanarella1,2, and Carolyn J. Lawrence-Dill1,2,3

1Interdepartmental Bioinformatics and Computational Biology, Iowa State University, Ames, IA

50011, USA

2Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011,

USA

3Department of Agronomy, Iowa State University, Ames, IA 50011, USA

Modified from a manuscript published in Plant Phenomics

5.1 Abstract

Many newly observed phenotypes are first described, then experimentally manipulated. These

language-based descriptions appear in both the literature and in community datastores. To

standardize phenotypic descriptions and enable simple data aggregation and analysis, controlled

vocabularies and specific data architectures have been developed. Such simplified descriptions

have several advantages over natural language: they can be rigorously defined for a particular

context or problem, they can be assigned and interpreted programmatically, and they can be

organized in a way that allows for semantic reasoning (inference of implicit facts). Because

researchers generally report phenotypes in the literature using natural language, curators have

been translating phenotypic descriptions into controlled vocabularies for decades to make the

information computable. Unfortunately, this methodology is highly dependent on human

curation, which does not scale to the scope of all publications available across all of plant biology.

Simultaneously, researchers in other domains have been working to enable computation on

natural language. This has resulted in new, automated methods for computing on language that
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are now available, with early analyses showing great promise. Natural language processing (NLP)

coupled with machine learning (ML) allows for the use of unstructured language for direct

analysis of phenotypic descriptions. Indeed, we have found that these automated methods can be

used to create data structures that perform as well or better than those generated by human

curators on tasks such as predicting gene function and biochemical pathway membership. Here,

we describe current and ongoing efforts to provide tools for the plant phenomics community to

explore novel predictions that can be generated using these techniques. We also describe how

these methods could be used along with mobile speech-to-text tools to collect and analyze in-field

spoken phenotypic descriptions for association genetics and breeding applications.

5.2 Background

The volume of data related to phenotyping of plants is enormous and growing consistently.

While sensor-based high-throughput technologies (described elsewhere in this issue) are

responsible for much of this growth in phenotype data, text-based phenotype descriptions also

contribute significantly. The scientific literature serves as the primary source of phenotype

descriptions, where an example might look something like “maize line with specific mutation

exhibits delayed flowering under stress condition .” Some phenotype descriptions find their way

into model organism databases (e.g., TAIR, MaizeGDB, and SGN) through dedicated curation

efforts (Berardini et al. (2015); Portwood et al. (2019); Fernandez-Pozo et al. (2015)).

Given the volume of phenotype descriptions available and the relevance of these descriptions

to biological problems generally, interest in finding ways to compute on phenotypic descriptions is

quite high. The most common method for making phenotypic descriptions computable involves

representing the data using terms from large but finite and highly structured vocabularies such as

the gene ontology (GO; Ashburner et al. (2000)), the plant ontology (PO; Cooper et al. (2013)),

or the plant trait ontology (TO;Cooper et al. (2018)), among others (reviewed in Braun and

Lawrence-Dill (2019)). The utility of using such vocabularies has been immense across the life

sciences generally, with over 27,000 citations to the first GO publication alone (see Ashburner



www.manaraa.com

68

et al. (2000)). Use of these controlled vocabularies allows for increased consistency in how

phenotypes are described, and the architecture of these data structures makes querying over a

large volume of phenotypes realistic. Their hierarchical nature also enhances the meaning of each

phenotype collected as a data point by inheriting implicit knowledge. For example, the GO

hierarchy (Figure 5.1(a)) specifies that fruit ripening is a type of aging, so the association of a

phenotype related to fruit ripening with this term allows that phenotype to be recovered by a

query for aging, without that association being explicitly stated.

Despite the computational and inferential advantages that this type of annotation confers,

detailed manual curation comes at the cost of the time and effort required to construct

high-quality annotations for the large number of phenotypes observed, and the simplification of

phenotypic descriptions to match the architecture of a particular knowledge representation

necessarily reduces the specificity of a phenotypic description, thus losing some shades of meaning

that are conveyed using natural language directly. How can these shortcomings be addressed?

There are several applications for which unannotated natural language is becoming directly

computable, a fact which has been largely underexploited in the biological disciplines.

The field of natural language processing (NLP) has made great advancement in recent years.

NLP methods are used to compute on language directly to gain insights from semantic

(meaning-based) and syntactic (structural) patterns. In the field of human health, applications of

NLP with machine learning (ML) have been used to discover hidden patterns which can aid in

informing patient care decisions. Such applications include text mining of medical records to

predict probabilities of disease, machine translation of physician notes, and automated

identification of articles relevant to disease phenotypes, to name just a few (reviewed in

Ohno-Machado (2011)). These types of text analyses typically involve representing natural

language using numerical vectors, which can then be used as inputs for ML models or to derive

similarity scores (Figure 5.1(b)).

In a recent publication, we used NLP and ML to encode descriptions of plant phenotypes and

measured pairwise similarity to construct similarity networks (Braun and Lawrence-Dill (2019)).
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These computationally generated networks were shown to recover underlying gene functions and

to predict membership in biochemical pathways, even on datasets distributed across multiple

species. Most importantly, these computationally generated networks outperformed networks

constructed using high-quality, ontology-based manual annotations in many cases, demonstrating

that for these types of predictive tasks involving large datasets, applying computational methods

over natural language descriptions yields comparable results to what can be achieved using a

slower, labor-intensive, manual curation-based approach. Although high-quality curation plays an

invaluable role in organizing phenotypic data, our findings suggest that there is much to be gained

by applying purely computational approaches to phenotypic descriptions in plants.

5.3 What Do Phenotype Networks Look Like and How Can They Be Used?

Figures 5.1(c) and 5.1(d) illustrate what two types of similarity networks inferred from

natural language descriptions of phenotypes look like. The first is useful for novel candidate gene

prediction, and the second could become useful for genome-wide association studies (GWAS)

through specification of a concept we call “synthetic traits” where clustered phenotypes are

treated as a single trait.

For the novel candidate gene prediction application (Figure 5.1(c)), each node in the network

refers to a particular gene and its corresponding phenotype. The similarity between two nodes

implies an increased probability that the pair of genes is involved in a common regulatory

network, biochemical pathway, or similar shared process. For example, two genes associated with

phenotype descriptions that mention leaf size and shape are predicted to be involved in the same

pathway or process. This sort of data structure enables researchers to generate new hypotheses

about which genes may be involved in processes that generate a given phenotype.

For gene discovery, computationally generated phenotype similarity networks would be

generated with no associations to genes asserted within the network (Figure 5.1(d)). In such a

network, highly related phenotypes would create clusters, which we are defining as “synthetic

traits.” Sequence data from plants with and without each synthetic trait could then be analyzed
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with well-understood GWAS approaches (Visscher et al. (2017)) to correlate specific genetic loci

with the synthetic traits. This methodology could lead to the discovery of genes related to some

phenotype properties that a researcher was not specifically looking to discover but that may be

well represented in a specific growing environment by the germplasm under observation. For

example, the graph may contain a cluster with words or phrases related to aerial root mucilage

(Figure 5.1(d)) enabling this property to be used as a trait in downstream analyses like GWAS,

even if this phenotype was not previously well understood (Van Deynze et al. (2018)). For

collecting these data in a field environment, we envision phenotypic descriptions of plants being

spoken and recorded, translated to text, then parsed computationally into specific statements. As

such, this methodology is applicable to qualitative descriptions, rather than continuous numerical

measurements. From there, the networks are created, highly interconnected clusters are identified

as synthetic traits, and those traits are associated with genomic variants.

5.4 What Seems Unexpected (to Us) about the Use of Automated Methods

for Computing on Phenotypic Descriptions?

The diversity of phenotype descriptions is beneficial to (rather than a hindrance to) this

method of computing on the data. It is not necessary to standardize the words used to describe

phenotypes for computational analysis, and the diversity of descriptions actually improves the

quality of the result if enough phenotypic observations are recorded. By using data-driven

approaches to specify synthetic traits, the concept of a trait becomes objective. This objectivity

in grouping observations means that scientists may discover phenotype and trait groups that have

not yet been conceived of and described previously. We are at the beginning of a new era for

computing on phenotypic descriptions. In the past, researchers had to create simplified and

structured descriptions to make phenotypes computable. Put another way, researchers were asked

to think and behave like computers. Now, computational methods can accommodate the rich

language that experts use to describe phenotypes. With NLP and ML, computers are able to

reason like humans.
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5.9 Figures and Tables

Figure 5.1 Phenotypic similarity. (a) For the GO, the similarity between two concepts

can be evaluated based on the relationship between the sets of terms from the

ontology that represent those concepts. This relationship can be quantified

using metrics such as Jaccard similarity (shown). (b) Natural language pro-

cessing technique such as sentence embedding using machine learning models

or presence and absence of individual words can be used to produce high-di-

mensional vector representations of concepts, where their position within the

vector space allows for quantification of similarity. The example shown plots

concepts within three dimensions. (c) Example phenotypic similarity network

where nodes represent genes and any associated phenotypic text descriptions.

(d) Example phenotypic similarity networks where nodes represent words or

phrases drawn from a set of descriptions about some population of plants.



www.manaraa.com

74

CHAPTER 6. THE CASE FOR RETAINING NATURAL LANGUAGE
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6.1 Abstract

Finding similarity across phenotypic descriptions is not straightforward, with previous

successes in computation requiring significant expert data curation. Natural language processing

of free text phenotype descriptions is often easier to apply than intensive curation. It is therefore

critical to understand the extent to which these techniques can be used to organize and analyze

biological datasets and enable biological discoveries. A wide variety of approaches from the

natural language processing domain perform as well as similarity metrics over curated

annotations for predicting shared phenotypes. These approaches also show promise both for

helping curators organize and work through large datasets as well as for enabling researchers to

explore relationships among available phenotype descriptions. Here we generate networks of

phenotype similarity and share a web application for querying a dataset of associated plant genes

using these text mining approaches. Example situations and species for which application of these

techniques is most useful are discussed.
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6.2 Introduction

Phenotypes, defined as measurable characteristics or properties of an organism that result

from interactions between genetics and the environment, comprise an enormous portion of the

biological data that is considered important across a wealth of domains in the life sciences and

beyond. Phenotypes are everything we see or measure in biology. On a more practical note,

phenotypes encompass critical information related to human health and medicine, and important

agronomic traits such as plant height and biomass of crop species. The scope of phenotypic

information also ranges widely, from cellular phenotypes such as membrane composition or

chemical concentrations, to community-level phenotypes like total leaf surface area in a field of

crops. The extreme diversity in how phenotypes can be observed and represented makes handling

this information on a computational level fundamentally different than genomic data, which lends

itself to computational means of representation and analysis based on the existing natural codes

of bases and amino acids (reviewed in Braun et al. 2018). This is especially true for phenotypes

that are qualitative in nature, such as abnormal morphology, rather than phenotypes that are

easily translated into a quantitative value, such as height (reviewed in Yanarella et al. 2020).

Despite these challenges, bio-ontologies have greatly helped to enable computation on

phenotypic information by providing standardized, hierarchical sets of descriptors (terms) that

can be used to annotate phenotypic information. Doing so enables comparison between data

points, including comparisons across multiple species, studies, and sources in a meaningful way,

which has contributed to the use of these data structures in recent years. Using terms from the

Gene Ontology (GO; Ashburner et al. 2000) to describe cellular components, functions, and

processes allows researchers to quickly find genes related to a biological concept of interest, and to

understand which biological processes are potentially carried out or influenced by a group of genes

of interest (Huang et al. 2009). Using this same ontology as the format for predictions about gene

functions allows datasets of predicted gene functions to be seamlessly incorporated with and

compared to known information (Zhou et al. 2019). Biomedical vocabulary graphs such as the

Human Phenotype Ontology (HPO; Robinson et al. 2008) and Disease Ontology (DO; Schriml
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et al. 2012) allow for organization and interoperability of the vast and growing body of knowledge

surrounding human medicine. Efforts such as Phenoscape (Edmunds et al. 2015), the Monarch

Initiative (Mungall et al. 2017), and Planteome (Cooper et al. 2018), use ontologies to provide

common data representations and allow for comparisons across diverse species or across

evolutionary history.

At the same time, both the performance and availability of natural language processing

(NLP) and machine learning (ML) methods for working with natural language and text data have

continually improved. This is largely due to recent and continued innovations in how neural

networks are designed to handle this type of information (Mikolov et al. 2013; Le and Mikolov

2014; Vaswani et al. 2017), and how they can be trained on massive volumes of unlabeled data

(such as Wikipedia or PubMed) to provide systems for accurately modeling text in computable

formats, and allowing for transferring to other domains and fine-tuning for more specific problems

(Devlin et al. 2018, Wolf et al. 2020). One result of this progress is that such techniques now

represent a complementary approach for computationally handling the diversity of phenotypic

information, at least for cases where phenotypes are represented as text descriptions. Given that

phenotypes have been described in academic articles for more than a century, sources for

phenotypic descriptions abound. Although the vast majority of phenotypes described in the

literature have not been extracted and represented in computationally accessible community

databases, some databases do exist that contain phenotype descriptions in free text fields.

Previously, we demonstrated that for some organizational tasks (like grouping functionally

similar genes together) using computational approaches that process text descriptions of

phenotypes can work as well or better than using curated ontology term annotations to create

similarity measurements (Braun and Lawrence-Dill 2019). Here, we demonstrate that this finding

holds true for a larger dataset of the available phenotype text descriptions from across six

different plant species. This means that where available, text descriptions of phenotypes have the

potential to provide useful biological insight when combined with a variety of methods from the

field of NLP. We therefore make a case for expanded inclusion of free text descriptions as a
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valuable component of biological databases going forward, whether as a supplemental data type

to more standardized ontology term annotations, or as a potential short-term alternative for

species currently lacking the curatorial resources to produce large scale datasets of

high-confidence, curated annotations.

In demonstrating the utility of analyzing text descriptions of phenotypes with NLP

approaches, we focus on what can be learned from evaluating similarity between descriptions as a

measure of gene pair similarity. This is closely comparable to the ongoing problem in NLP of

measuring sentence similarity, which has applications for text querying, text classification, and

other tasks (De Boom et al. 2016). An enormous variety of solutions have been put forward for

this problem, including both general solutions as well as more narrowly focused solutions for

working in particular domains, such as biomedical literature (Soğancıoğlu et al. 2017, Chen et al.

2019). The number of solutions to this task is related to the fact that virtually all approaches for

dealing with text computationally involve representing words or sentences as numerical vectors,

on top of which similarity or distance metrics can then be applied to quantify relatedness between

the two texts. In other words, all approaches for vectorizing text, which is typically the first step

in handling any problem with NLP, can subsequently be used to find similarity between two texts

by applying a similarity metrics to their vector representations. This enables the generation of

networks for organizing data across large datasets. In this work, we assess the performance of a

variety of both simple and state-of-the-art methods for translating plant phenotype descriptions

into numerical vectors and build networks that can be used to make inferences from pairwise

similarities.

We will also discuss and demonstrate how these same techniques can be applied for organizing

and analyzing large datasets of text descriptions of phenotypes, accounting for phenotypic

characteristics that have not yet been explicitly defined by the input data. Finally, we also

provide a web application that enables others to explore and make use of phenotypic similarities

identified. The application, called QuOATS (Querying with Ontology Annotations and Text
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Similarity), can be used to search for plant genes with similar phenotypic descriptions using gene

identifiers, ontology terms, keywords, or similarity to searched phenotype descriptions as input.

6.3 Methods

6.3.1 Datasets

We collected a dataset of available phenotype descriptions that have been mapped to specific

plant genes, primarily through mutation studies, from the model species databases TAIR

(Berardini et al. 2015), MaizeGDB (Portwood et al. 2019), and SGN (Fernandez-Pozo et al. 2015),

as well as from a dataset of phenotype descriptions created by Oellrich et al. 2015. After merging

data from multiple sources and preprocessing the texts, the combined dataset consisted of 7,907

genes from 6 plant species, with the quantity of genes and the text describing their associated

phenotypes varying across species (Table 1). The distributions of sentences and words quantities

present per gene also vary broadly across species (Figure 6.1). Portions of the vocabulary used to

describe phenotypes in each of the species are unique to that particular species, but in all cases

more than 80% of the vocabulary was shared with at least one other species (Figure 6.2).

For the genes in this dataset, we also collected three types of ontology term annotations:

Gene Ontology (GO; Ashburner et al. 2000) annotations, Plant Ontology (PO; Jaiswal et al.

2005; Cooper et al. 2013) annotations, and entity-quality (EQ) statements composed of multiple

ontology terms. For in-depth discussion on how EQ statements are composed and compared to

one another, see (Hoehndorf et al. 2011; Oellrich et al. 2015; Braun and Lawrence-Dill 2019). GO

and PO annotations were additionally sourced from the model species databases (Berardini et al.

2015; Portwood et al. 2019; Wimalanathan et al. 2018) and Planteome (Cooper et al. 2018;

http://www.planteome.org), and were limited to those with evidence codes indicating they were

either experimentally determined or created through author or curator statements (Consortium

2012; Giglio et al. 2019). The EQ statements were sourced from the dataset of curator-defined

EQ statements created by Oellrich et al. 2015. Not all genes in the dataset had at least one

annotation of each type, and these quantities are given in Table 6.1. The preprocessed, merged,

http://www.planteome.org
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and cleaned dataset described here is available and further described through a dedicated

repository (see Code and Data Availability).

We also mapped the genes in this dataset to objects from additional bioinformatics resources,

namely biochemical pathways in KEGG (Kanehisa et al. 2002) and PlantCyc (Schläpfer et al.

2017), protein-protein associations in STRING (Szklarczyk et al. 2016), ortholog relationships in

PANTHER (Thomas et al. 2003), and a hierarchical Arabidopsis gene classification based on

phenotypes (Lloyd and Meinke 2012). A subset of the genes in the complete dataset are found in

each of these resources (Table 6.1).

6.3.2 Measure of gene pair similarity

We used a set of approaches for generating n by n pairwise similarity matrices, where n is the

number of genes in the dataset, and the values in the matrix are some measure of the similarity

between a given pair of genes. Each approach yields one matrix. The approaches belong to two

main groups: text-based approaches that translate the text descriptions of phenotype(s)

associated with each gene into numerical vectors, so that gene pair similarity can then be found

using cosine similarity, and curator-based approaches, that rely on similarities between existing

annotations for each gene (GO terms, PO terms, or EQ statements) to quantify gene pair

similarity. Each of the text-based approaches used is described in overview here, as well as how

the curator-based approaches determine gene pair similarity from annotations.

6.3.2.1 Tokenizing sentences

For each of the text-based approaches, we determined the effects of treating the entirety of the

phenotype descriptions associated with a gene as one concatenated text, and comparing between

those texts for pairs of genes to measure gene pair similarity, or by first tokenizing (separating)

the phenotype descriptions into individual sentences, and treating those sentences as individual

text instances. Then the maximum similarity scores obtained by any pair of sentences between

those for those genes was taken as the gene pair relatedness score. This measure is intended to
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alleviate the effects of genes with longer phenotype descriptions seeming to appear unrelated to

ones with shorter ones, and is analogous to looking for local alignments in the text, rather than

global ones. In the subsequent Methods sections, we use the word ‘text’, to mean either the

concatenation of all phenotype descriptions associated with a gene, or a single sentence from

those descriptions, depending on which of these two methods is being described. Sentence

tokenization was done with the NLTK package (Bird et al. 2009).

6.3.2.2 Baseline approach

Some genes in the collected dataset have identical phenotype descriptions. As a baseline

approach against which to compare the subsequently described approaches, we include an

approach that simply yields a similarity value of 1 for gene pairs that have identical texts, and 0

for gene pairs with texts that differ in any way, after preprocessing.

6.3.2.3 TF-IDF

Constructing tf-idf (term frequency-inverse document frequency) vectors is one of simplest

ways of representing text in a computable format. With this approach, phenotype descriptions

are treated as a bag-of-words, and translated to a vector which is the same length as the total

number of unique words in the dataset vocabulary, where each position in the vector corresponds

to a particular word. The value at the position in the vector for a particular word is the number

of times that word appears in the phenotype description (term frequency) weighted by the inverse

of the fraction of phenotype descriptions in which that word appears (inverse document

frequency). Weighting by the inverse document frequency emphasizes the importance of rarer

words (e.g., ‘gametophyte’) and de-emphasizes the importance of more common words (e.g.,

‘plant’) in the vector encoding. In addition to this straightforward implementation of the tf-idf

approach, we also used as a bigram approach where positions in the vector represent a sequence of

two consecutive words (as opposed to the unigram approach, where positions are a single word, as

described above). We also used a tf-idf monogram approach where the phenotype descriptions in
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the datasets are first subset to only include words that are over-represented in journal articles

abstracts related to plant phenotypes. The criteria for inclusion was that a word appeared at

least twice as frequently in the dataset of plant phenotype related abstracts compared to a

general domain corpus. In all cases, cosine similarity was used to calculate gene pair similarity

after phenotype descriptions were translated into vectors.

6.3.2.4 Computational annotation (NOBLE Coder)

NOBLE Coder (Tseytlin et al. 2016) is a computational tool for annotating text with

ontology terms. We used NOBLE Coder to annotate phenotype descriptions with terms from a

set of bio-ontologies (GO, PO, and PATO), inheriting additional terms using the hierarchical

structure of the ontologies. We used NOBLE Coder with both the exact and partial match

parameters, which alters how strictly an ontology term must match a text string for an

annotation to be assigned. After assigning terms to phenotype descriptions for genes by this

method, each gene is represented by a set of terms rather than a set words, and the process of

translating these representations into numerical vectors and calculating gene pair relatedness

using cosine similarity is the same as with the tf-idf approach, with positions in the resulting

vectors referencing terms instead of words. Again, cosine similarity was applied to yield similarity

matrices from these resulting vectors.

6.3.2.5 Topic modeling (LDA and NMF)

We used Latent Dirichlet-Allocation (LDA; Blei et al. 2003) and Non-negative Matrix

Factorization (NMF; Lee and Seung 1999) to perform topic modelling on the dataset of

phenotype descriptions. These are decomposition algorithms that are widely used in NLP

applications (reviewed in Jelodar et al. 2019), and result in translating a document-term matrix

into a document-topic matrix (in our case, documents are phenotype descriptions). If the

algorithm is run to learn 10 topics, then the outcome is that each phenotype is represented by a

vector of length 10 where each position indicates the probability that the phenotype is derived
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from that particular topic. Determining the appropriate number of topics to use for a particular

dataset is often a matter of trying a range of values, and looking at which value produces the

most coherent or logical topics given the subject matter. Based on the word probability

distributions created using a range of topic quantities, we used our best judgement to elect to use

50 topics and 100 topics for our embedding approaches using each of these algorithms.

6.3.2.6 Neural network-based embeddings (Word2Vec, Doc2Vec, BERT,

BioBERT)

We also used machine learning approaches designed to find vector embeddings that represent

the semantics of input text in a compressed space, with positions in the embedding representing

abstract semantic features. Word2Vec (Mikolov et al. 2013) is an approach for generating word

embeddings based on the contexts in which words appear in a corpus. We used a skip-gram

model, where a shallow network is trained to take one word at a time from our corpus as input

and predict surrounding context words. The result of this self-supervised training step is a vector

embedding for each word that occurs in the dataset of descriptions that reflects the context those

words appear in, in a compressed feature space (200 dimensions). To supplement our dataset of

phenotype descriptions to build a larger corpus for self-supervised training, we shuffled in

sentences accessed from PubMed that were present in abstracts retrieved with queries for the

word ‘phenotype’ and any of the names of the species present in our dataset. Hyperparameters

for model construction were selected through a validation task of predicting whether ontology

term names and synonyms from PATO and PO were parent-child or sibling pairs, or more

distantly related. This validation task led to the selection of a skip-gram model using a window

size of 8, and a hidden layer size of 200 (see genism package (Rehurek and Sojka 2010) for

parameter details). In addition, as a point of comparison, we also used pre-trained published

models trained on PubMed (Moen and Ananiadou 2013) and Wikipedia (Lau and Baldwin 2016).

Doc2Vec is an extension of Word2Vec that either exclusively learns embeddings for documents

(texts with multiple words) or learns embeddings for documents simultaneously with word
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embeddings. We used a distributed bag of words architecture where the arbitrary document tags

are used as an input in a self-supervising to predict randomly selected words form the input

documents, resulting in network architecture that can be used to infer document-specific

embeddings (Le and Mikolov 2014). We utilized the same training approach as for word

embeddings, using only concept pairs with multiple words as validation data. In addition, we

used a pre-trained Doc2Vec model trained on Wikipedia (Lau and Baldwin 2016).

BERT (Bidirectional Encoder Representations from Transformers) is a large-scale neural

network architecture trained on large unlabeled text datasets to predict masked words in

sentences and predict whether one sentence follows another in a corpus (Devlin et al. 2018). This

results in a network where the encoder can be used to generate context-specific vector embeddings

for words in an input sentence. We used both the BERT base model (Devlin et al. 2018) and

BioBERT models fine-tuned on abstracts from PubMed and articles from PubMed Central (Lee

et al. 2020).

The Doc2Vec models were used to directly infer vector embeddings for phenotype

descriptions. The Word2Vec and BERT models generate vector embeddings for each word in

phenotype descriptions, so these individual word-embeddings were combined to produce a single

vector embedding for each phenotype description. Whether the vectors are summed or averaged is

a hyperparameter choice, along with how many encoder layers are used to build the BERT word

vectors, and whether those layers should be summed or concatenated. These hyperparameter

choices were made using performance on the validation task described previously for the networks

trained on phenotype descriptions, and for the pre-trained models we selected hyperparameters

based on their performance on a related biomedical sentence similarity problem with the

BIOSSES dataset (Soğancıoğlu et al. 2017), and went forward with the hyperparameters that

provided the best results on that separate dataset. As with the other approaches, cosine similarity

was applied to the resulting vectors to yield similarity matrices.
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6.3.2.7 Using embeddings to generate meaningful vectors with word replacement

Producing the most informative vector representations of phenotype descriptions requires

combining the tf-idf approach of explicitly representing the quantity of each particular word from

the vocabulary that is present in each phenotype description, and also accounting for semantics

through learning vector embeddings of particular words relative to their own meanings in this

vocabulary or their meaning relative to the words around them in these phenotypes. We used an

approach where pairwise word-similarity matrices for each word in the vocabulary as represented

by our Word2Vec models were used to replace each word in all descriptions with the most

common word in the vocabulary out of the word itself and the three other most similar words

predicted by that model (algorithm detailed in Pontes et al. 2016). This results in substitutions

such as ‘susceptible’ to ‘resistance’ that may allow comparisons to be made between phenotypes

that simpler bag-of-words approaches would consider as distinct. The resulting vector

representations are tf-idf vectors, but the semantic relationships between words as informed by

the neural network models is already account for prior to encoding.

6.3.2.8 Curated annotations (GO, PO, EQ statements)

For a point of comparison to the text-based approaches described above, we also used the

curator-based annotations to quantify gene pair relatedness. For GO and PO annotations, we

calculated similarities as the maximum information content of any single term shared between the

annotation sets for a given pair of genes. The more similar two sets of annotations are, the more

specific (with higher information content) the terms shared between the two sets will be with

respect to the ontology graph structure, leading to greater similarity. In this case, information

content is transformed to be in the range of 0 to 1, so that it can be used as a similarity metric

compatible with the other approaches used. To quantify similarity between genes using EQ

statements, we used the pairwise similarities provided in Oellrich et al. 2015.
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6.3.3 Formulating Biologically Relevant Questions

We used additional bioinformatic resources (KEGG, PlantCyc, STRING, PANTHER, etc.) to

assess representation of biologically relevant relationships between gene pairs in the dataset, that

each approach described above can attempt to recover by quantifying the similarity for that pair

of genes, allowing for direct comparison among the approaches (Table 6.2). Because not all genes

in the dataset map to each resource (Table 6.1), the number of gene pairs that are applicable to

each question are not consistent (Table 6.3). Although these questions are likely related to one

another in terms of true biology (e.g., if a pair of genes are related to the same observable

phenotype, they are probably more likely to act in a shared pathway), these questions are neither

identical nor redundant in the context of this work, because different questions apply to different

portions of the dataset, and even within the overlaps of gene pairs that apply to multiple

questions, the set of positives (gene pairs for which the correct answer is ‘true’) are not the same

(Table 6.4). For example, the two most similar tasks are ‘Associations’ and ‘Pathways’, where

1,271,297 of the same gene pairs are considered in both tasks, and the Jaccard similarity between

the two sets of target values (‘true’, ‘false’) between those gene pairs is only 0.172 (Table 6.4). For

this reason, we looked at the results of each of these questions individually rather than combining

them.

6.4 Results

6.4.1 Text-based approaches recover biological relationships

Using each of the text-based approaches as well as using similarity metrics over the existing

curated annotations, we calculated gene pair similarity values for all pairs of genes in our dataset.

We measured the success of each approach for (1) predicting whether two genes were orthologs

(as specified in PANTHER), (2) predicting known protein associations specified in STRING, (3)

predicting whether two genes functioned in at least one of the same biochemical pathways (as

specified PlantCyc and KEGG), and (4) at predicting whether two Arabidopsis genes belonged to
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one of the phenotype categories specified by Lloyd and Meinke 2012. For each of these biological

questions, a given approach for measuring gene similarity is considered useful if the distribution of

values for gene pairs for which the answer to the question is true is distinct from the distribution

of values for gene pairs for which the answer to question is false. The success of each approach for

each biological question was calculated in terms of the maximum F1 statistic. We also

recalculated the maximum F1 statistic for just the genes for which we have GO annotations, PO

annotations, and EQ statements, to directly compare performance of each approach on each

question with approaches that are based on curation (Table 6.5, Supplemental Table 6.6).

6.4.1.1 Text-based approach performance is dependent on biological query type

Of the four biological questions assessed for this analysis, predicting whether two genes were

orthologous, whether two genes shared an association, or whether two genes belonged to a shared

biochemical pathway were infeasible for any of the text-based or curation-based approaches, in

terms of broad performance measured with maximum F1 statistics (Table 6.5, Supplemental

Table 6.6). The largest F1 statistic obtained across all three of these tasks for any approach was

0.140 using the curated GO annotations, with all other approaches yielding F1 values less than

0.12 (Table 6.5, Supplemental Table 6.6). However, F1 statistics were much higher for the task of

predicting whether two genes belonged to the same phenotypic category, an expected result given

that this prediction follows directly from the explicit contents of the phenotypic descriptions

(Table 6.5). This was true for both the text-based and curation-based approaches, but the best

performance was achieved using text-based approaches (Table 6.5). Performance on this task of

predicting whether two genes share a phenotypic category can be broken down by general classes

of approach (Figure 6.3).

As previously stated, all approaches were unsuccessful in predicting ortholog relationships

(Supplemental Table 6.6). In addition, all approaches were completely unsuccessful in predicting

whether two genes from different species were involved in a common biochemical pathway

(Supplemental Table 6.7). Even though the maximum F1 statistics for predicting whether two
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genes share a pathway were already low, these values were even lower when filtering the dataset

to only look at interspecies gene pairs, and marginally greater when filtering the dataset to only

look at intraspecies gene pairs (Supplemental Table 6.7). Therefore, even the very small amount

of biological information recovered only applies to looking at genes from within the same species.

This indicates that comparing the text of phenotype descriptions across different species is not

biologically informative in this case. This might not be true for all species or all phenotypes, but

it does not generalize across the current dataset of available plant phenotype descriptions.

6.4.1.2 Significant description similarity within individual phenotype and

pathway gene groups

Although predicting whether two genes shared a biochemical pathway was generally

unsuccessful (as evaluated by low maximum F1 values), this is in part a consequence of the fact

that pathways vary greatly in how related the phenotype descriptions for their component genes

are. We evaluated this property by plotting the average gene-to-gene similarity for all possible

gene pairs in each individual pathway, as a percentile of the similarities between all genes pairs

(Figure 6.4. As a point of reference, we repeated this analysis for phenotypic categories, where

larger F1 values were obtained. We randomly sampled groups of genes at each value of n to

calculate p-values for each phenotype category and pathway, calculating the probability of each

approach generating a mean similarity value between genes in that group that is that large or

larger, controlling for false discovery rate for each approach with the Benjamini–Hochberg

procedure (Table 6.5). For text-based approaches using sentence tokenization, 81% to 100% of the

phenotypic categories had a significantly large average similarity value (with respect to the

Benjamini–Hochberg procedure), while between 6% and 39% of the pathways obtained significant

average similarity values, for these same approaches, with an average of 23% (Table 6.5). Taken

together, these results indicate that while text-based similarity values are not broadly indicative

of whether or not two genes share a pathway, there is a significant subset of known pathways for

which this is the case. In the case of groups of genes belonging to the same pathway that do have
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similar phenotype descriptions, these are generally either due to mentions of downstream

phenotypic effects of pathway disruption, or more direct mentions of the pathway function or role.

For example, the descriptions associated with genes in the chlorophyll degradation pathway

include mentions of necrotic lesions, and the descriptions associated with genes in the

phospholipid desaturation pathway include mentions of fatty acid levels or composition.

6.4.1.3 Combining syntactic and semantic approaches improves recovery of

phenotypic categories

The purely syntactic text-based approaches (tf-idf) were among the most successful in terms

of maximum F1 statistic for predicting whether gene pairs belonged to the same phenotypic

category (Table 6.5, Figure 6.3). In general, semantic approaches that use machine learning

techniques to drastically reduce the dimensionality of the vector encoding for each text instance

were comparably successful (Table 6.5, Figure 6.3). However, the combined approaches where

semantic techniques were used to augment the information in the tf-idf vectors by replacing words

with similar words prior to encoding provided a boost in performance over other approaches

(Table 6.5, Figure 6.3). Taken together, this indicates that this dataset contains phenotype

descriptions for genes in the same phenotypic category that are similar both in terms of explicitly

shared words (where syntactic approaches are most helpful), as well as genes that are similar only

in terms of shared meaning but not specific words (where semantic approaches provide an

advantage). Using word embedding models trained on plant phenotype specific data provided

marginal improvement over models trained on PubMed generally or the Wikipedia corpus, but all

three models provided the same boost over other approaches when applied to word replacement,

indicating that useful associations between words for recovering common phenotypic categories

from descriptions are not limited to relationships only represented in a narrow corpus of text

related to plant phenotypes. Given that using bio-ontologies for this same task did not perform as

well as text-based approaches, and one of the main functions of such ontologies in this case is to

inject domain-specific inferences into the similarity metrics, this result is not surprising.
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6.4.1.4 Sentence tokenization is important for comparing phenotypes

For all the text-based approaches on all the biological questions posed, the preprocessing step

of tokenizing phenotype descriptions into sentences and evaluating gene pair relatedness as the

maximum pairwise sentence similarity resulted in greater F1 statistics (Table 6.5, Table 6.6).

Unexpectedly, this held true even for approaches that are generally intended for use with larger

input texts, such as Doc2Vec, and topic modeling algorithms LDA and NMF. This indicates that

when predicting whether two genes share a common role, it is important to account for ‘local

alignments’ in their associated phenotype descriptions, as the similarity might exist between

single sentences associated with those genes while other sentences act as noise obscuring this

relationship.

6.4.2 Enabling biologists to use these methods and dataset

6.4.2.1 Web application (QuOATS)

We have developed a web application called QuOATS (Querying with Ontology Annotations

and Text Similarity) for querying the dataset described here through leveraging the computational

methods described here (Figure 6.5A). The underlying dataset of plant genes is the same as is

described previously (Table 6.1), and can be filtered to include particular species (Figure 6.5B).

The application supports four different query types (Figure 6.5D), with the primary purpose being

to obtain lists of genes that are related to phenotypes described similarly to some phenotypic

characteristic(s) or if interest. Firstly, a free text query can be used to search the dataset for any

genes related to phenotypes that are described similarly to text strings separated by periods in

the query (Figure 6.5E). Secondly, a keyword query can be used to input any number of strings of

any length, and genes whose phenotype descriptions contain those strings (after preprocessing

including stemming and case-normalization) are returned (Figure 6.5F). Thirdly, an ontology

term query can be used to search for any genes annotated by curators with one or more ontology

terms, either directly or inherited through the ontology hierarchy (Figure 6.5G). Lastly, a gene

identifier query can be carried out to search for any gene name, protein name, gene model, or any
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other gene identifier potentially represented in the dataset. Selecting a gene from the returned list

of candidates that match the query will auto-complete a second query that returns genes related

to phenotypes that are described similarly to the selected genes (Figure 6.5H).The similarity

scores used to rank genes in the returned list are calculated using approaches described here,

selected from a drop-down menu in the web application (Figure 6.5C).

6.4.2.2 Proof of concept applications of the web tool

In our previous findings illustrated in Braun and Lawrence-Dill 2019, we discussed how a set

of genes related to anthocyanin biosynthesis could be used to demonstrate recovering gene groups

by querying specifically with phenotype descriptions or computationally generated annotations

from those descriptions. Specifically, we looked at a dataset of 16 maize genes (Li et al. 2019) and

21 genes from Arabidopsis (Appelhagen et al. 2014) but only 10 of the maize genes and 16 of the

Arabidopsis genes were present in the dataset. Our expanded dataset in this work includes 14 of

those maize genes and 18 of the Arabidopsis genes. We now evaluate the results of querying with

each of these genes in the web application QuOATS, to recover both genes in the same species

from these sets and genes in the alternate species. Over the 64 total queries (32 within the same

species and 32 between species), we quantified the average and standard deviation of the number

of target genes contained in bins of ranks in the query results, in bin sizes of 10 up to 50, and a

final bin for genes that obtain ranks higher than 50 (Figure 6.6). Additionally, we also repeated

this analysis for a set of 9 core autophagy genes in Arabidopsis (Figure 6.6). These queries

illustrate a proof-of-concept for using this web application to use phenotypic descriptions

associated with one gene to recover other related genes. This application demonstrates the utility

of applying text-based algorithms in cases where ontology annotations are either not present, are

insufficient, or could simply be augmented for allowing additional, less rigidly-defined phenotype

descriptions to be searchable as well.
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6.5 Discussion

The difficulty in computing on phenotypic data is largely a consequence of extreme variability

with which these data are represented, and the diversity of ways that phenotypes are measured,

quantified, and described. This is in contrast with sequence data; biology as a field has

enormously benefited from the ways in which sequence data are intuitively computed on, given

the naturally occurring nucleic acid and amino acid coding systems. Sequencing technology

provided the datasets to compute on, and algorithms and applications like BLAST provided the

means to make use of these data. Ontologies have begun to provide a similar means for making

phenotypic data computable, and processing of natural language provides an additional avenue by

which we can make biological inferences if we have the datasets on which to apply them. The

combination of biological ontologies, machine learning approaches, and NLP provide strategies for

handling phenotypic descriptions and learning from it where it exists.

Plant phenotypes are frequently described as text within academic papers or research notes.

However, these text descriptions are rarely incorporated into relevant research community

databases, associated with a specific gene or genotype, and made readily available as part of the

growing data resources for that species. This could be the case for a variety of reasons, including

the difficulties involved with extracting phenotype descriptions from larger texts, the curatorial

effort necessary to produce high quality datasets of phenotypes descriptions associated with

genes, or because these text representations of phenotypes are considered a non-valuable data

type, and are instead represented by annotations using structured vocabularies of hierarchical

terms such as biological ontologies. Notable exceptions to this situation exist, including The

Arabidopsis Information Resource (TAIR), which contains thousands of text descriptions of

phenotypes mapped to specific Arabidopsis genes (Berardini et al. 2015).

In this work, we have shown that a variety of NLP approaches for vectorizing phenotype

descriptions in order to generate gene pair similarity matrices are equally or more predictive in

general of known phenotype categorizations compared to using existing curated annotations for
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this task. Based on these results, we argue that it is worthwhile for databases that contain

gene-to-phenotype information to include natural language descriptions of phenotypes.

The natural language descriptions of phenotypes are useful, and when combined with NLP

approaches for computationally representing text can be leveraged to provide a way for

researchers to quickly identify genes associated with phenotypes similar to the ones that they are

observing or studying. Natural language descriptions can also be used to organize genes

computationally on a large scale and discover which categorizations of phenotypes are present in a

dataset, with techniques like clustering and topic modeling. In some cases, this natural language

data may be easier to generate than ontology annotations. In situations where curators are not

available (or have limited time) to generate the high-confidence ontology term annotation

datasets, it may be faster or still possible for authors or someone else to at least identify the

free-text portions of the manuscript that include phenotype descriptions, and the genes associated

with them. In the near future, NLP techniques for parsing full-texts may also progress to the

point where this phenotype identification could be done automatically as well. In these instances,

we argue it is worthwhile to generate and make accessible this free text phenotype information. In

other cases, these text data might already be generated, but are potentially discarded. In

situations where curators are actively involved in generating ontology annotations from papers,

this process often involves the tasks of highlighting text from the paper, or possibly writing down

the phenotype descriptions first then producing the ontology term representation of those

associations. Given that the free text itself is useful, we argue it should be retained in the final

mapping in the resulting database or dataset rather than being discarded as an intermediate data

form. It is possible that for some applications the ontology annotations will be more useful than

the natural language descriptions, for example when making comparisons between species, but we

have shown that this is not always the case, and if it is being generated regardless, it makes sense

to retain the natural language and make it available.

We envision that the area where the application of these methods would make the most

difference is in the case of species where phenotype descriptions have not already been thoroughly
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standardized and special vocabularies have already been created and assigned to phenotype data

in a pervasive, large-scale way (as is the case with human phenotypes and diseases), but where

phenotypes are still largely described in general biological terms. In addition, these approaches

would make the most sense to use when high quality, curated datasets of ontologized phenotypes

are either not available or not financially feasible. In these cases, if at a minimum phenotype

descriptions are extracted from literature and associated with specific genes in an accessible

community database, these methods can be applied to organize these data, group by genes into

sets that impact similar phenotypes, and allow researchers to search based on linguistic similarity.

In 2011, Mike Freeling made an impression by saying, “Ontologies are for people who don’t

understand their phenotype,” to CJLD at the Annual Maize Meeting Genetics Conference in

response to a request to review the completeness of the MaizeGDB Phenotypic Controlled

Vocabulary (Michael Freeling personal communication). While ontologies have proved invaluable

for managing and analyzing the massive quantity of data that biologists deal with, we think that

this quote emphasizes the key finding for the efforts here: that we should not undervalue the

utility of free text as a datatype, and that it should be made available through bioinformatic

resources that provide phenotypic data to the research community, given that we have the

computational tools to leverage it in useful ways. Not only do plant scientists understand their

phenotypes and use rich language to describe them, there is a diversity of algorithms available to

enable computation on phenotypic descriptions so that the scope of data any single researcher can

access becomes quite expansive.

Data and Code Availability

The dataset of plant genes collected from other sources for this work is available at

https://git.io/JTutQ, along with all the code for preprocessing, reshaping, and merging this

data. The code for carrying out the analysis shown here has its own repository at

https://git.io/JTutN. The results given here can be reproduced using code and datasets at

those locations. In addition, a Python package called OATS (Ontology Annotation and Text

https://git.io/JTutQ
https://git.io/JTutN
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Similarity) for working with gene-phenotype datasets, ontology annotations, and free-text was

developed in parallel with this work. This package was used extensively for this analysis, and can

be found at https://git.io/JTuqv, with documentation available at

https://irbraun-oats.readthedocs.io. We have combined the dataset and some of the

techniques for identifying similar texts into a streamlit web application named QuOATS available

at https://quoats.dill-picl.org/. Use this tool for looking up genes by phenotype keywords

or phrases, or finding genes with similar descriptions to a searched phenotype description. The

code for this web application is available at https://git.io/Jtv9J.
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6.7 Figures and Tables

Figure 6.1 Phenotype description text length distributions across six plant species. The

distributions for quantities of text in terms of both sentences (Left) and words

(Right) describing phenotypes for genes in each of the plant species. Outliers

with very long descriptions are not shown, which includes <1% of the genes

belonging to Arabidopsis and <0.1% of the genes belonging to maize. The

y-axis is scaled to be proportional to the quantity of genes for each individual

species.
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Figure 6.2 Overlap among vocabularies used to describe phenotypes in each species. For

each of the six species in the dataset, listed on the left, the proportion of words

in the total vocabulary used in all phenotype descriptions of that species that

are shared with the vocabularies of a given additional number of species are

shown, with colors indicated on the right. For example, plum/purple indicates

the proportion of words used only in that species, and light green indicates the

proportion of that species vocabulary that is shared with the vocabulary of all

five other species.

Figure 6.3 Comparing the groups of gene pair similarity approaches. The maximum F1

statistics for each approach in each broad category for measuring gene similarity

is shown, with the bar indicating the best F1 statistics among all the approaches

in that general group. Bars on the left indicate performance when phenotype

descriptions are treated as one concatenated piece of text, and bars on the right

indicate performance when the descriptions are sentence tokenized first.
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Figure 6.4 Cohesiveness of phenotype and pathway gene groups. Phenotype categories

(Top) and Biochemical Pathways (Middle and Bottom) are listed, with the

number of genes in this dataset belonging to each group listed to the right

of the group’s name. The x-axis indicates group cohesiveness, given as the

percentile against all pairwise gene distances that the average distance between

any two genes in that group falls in. The minimum value of this metric achieved

by any approach that is in the listed category is shown. For example, the

location of the yellow dot in a particular row indicates the smallest intragroup

distance percentile obtained by any approach in the topic modeling category

of text-based approaches for that particular group of genes.
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Figure 6.5 Querying plant genes, annotations, and phenotype descriptions. A. The name

of the web application we have developed. B. Option to subset the available

dataset to only include certain species. C. Option to select the algorithm or

method used to compare phenotype descriptions. D. Four different types of

querying are supported. E, F, G, H. The information given here for each

query type is presented when using the webtool, but has been re-organized and

truncated for the sake of illustration. The queries listed are the text strings

that are entered into the search bar to generate the results shown. The returned

genes appear in the results in the row indicated by the number to the left of

the gene names. The reasons that these genes appear in this order given these

particular queries are described to the right of the gene names.
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Figure 6.6 Querying with autophagy core genes and anthocyanin biosynthesis genes in

QuOATS. The labels above each plot indicate the set of genes, the species of

the genes used as the queries, and then the species for which the resulting

ranked genes were filtered (in the case of the left three plots the species is the

same for queries and targets). Bars represent bins of rank values for returned

genes. Their height indicates the average number of genes with those ranks

returned in each query. The error bar indicates the standard deviation in each

case. Bars in each plot are labeled with the rank that falls in the right-most

edge of that bin. For example, the bar labelled 20 represents genes that were

ranked between 11 and 20 in the query results.
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Table 6.2 Biological relationships tested in each task.

Task Description (Are genes A and B. . . ) Knowledge Source

Phenotypes ...impacting the same phenotype? Lloyd and Meinke, 2012

Pathways ...functioning in the same pathway? PlantCyc, KEGG

Associations ...known to share a function or process? STRING

Orthologs ...orthologous to one another? PANTHER

Table 6.3 Number of genes and gene pairs used for each task.

All Text Data With Annotations

Question Genes Pairs Positive Pairs Genes Pairs Positive Pairs

Phenotypes 2,356 2,774,190 303,009 10.92% 2,284 2,607,186 293,221 11.25%

Pathways 1,838 1,688,203 45,847 2.72% 1,045 545,490 14,853 2.72%

Associations 4,620 9,343,325 147,271 1.58% 2,377 2,530,556 52,541 2.08%

Orthologs 921 248,913 65 0.03% 368 43,187 23 0.05%

Table 6.4 Similarities among datasets across biological tasks.

Task 1 Task 2 Overlap Size Jaccard (Pairs) Jaccard (Values)

Associations Pathways 1,271,297 0.130 0.172

Phenotypes Pathways 511,566 0.129 0.050

Phenotypes Associations 2,687,721 0.285 0.032

Pathways Orthologs 29,654 0.016 0.012

Phenotypes Orthologs 0 0.000

Associations Orthologs 0 0.000
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Table 6.5 Comparing F1scores and group significance rates for phenotype and pathway

relationships.

Phenotypes (F1, % Significant) Pathways (F1, % Significant)

Approach Category Concat All Genes Curated All Genes Curated

Baseline Baseline Yes 0.197 17% 0.202 19% 0.053 6% 0.053 3%

TF-IDF (Unigrams) TF-IDF Yes 0.465 100% 0.473 100% 0.100 59% 0.114 55%

TF-IDF (Unigrams & Bigrams) TF-IDF Yes 0.473 100% 0.482 100% 0.104 61% 0.120 57%

TF-IDF (Plant Article Unigrams) TF-IDF Yes 0.462 100% 0.471 100% 0.096 59% 0.110 59%

NOBLE Coder (Precise) Annotation Yes 0.364 91% 0.370 91% 0.072 33% 0.079 25%

NOBLE Coder (Partial) Annotation Yes 0.372 100% 0.380 100% 0.082 41% 0.094 33%

LDA (50 Topics) Topic Modeling Yes 0.365 91% 0.376 93% 0.080 11% 0.088 12%

LDA (100 Topics) Topic Modeling Yes 0.346 83% 0.356 86% 0.073 9% 0.083 10%

NMF (50 Topics) Topic Modeling Yes 0.452 100% 0.464 100% 0.089 39% 0.103 47%

NMF (100 Topics) Topic Modeling Yes 0.413 100% 0.423 100% 0.086 46% 0.102 46%

Doc2Vec (Wikipedia) ML (Embeddings) Yes 0.313 83% 0.321 83% 0.063 22% 0.068 17%

Doc2Vec (Plants) ML (Embeddings) Yes 0.233 45% 0.237 48% 0.059 20% 0.060 16%

Word2Vec (Wikipedia) ML (Embeddings) Yes 0.276 98% 0.284 98% 0.079 14% 0.096 20%

Word2Vec (PubMed) ML (Embeddings) Yes 0.320 93% 0.327 98% 0.086 15% 0.108 19%

Word2Vec (Plants) ML (Embeddings) Yes 0.445 93% 0.453 98% 0.097 29% 0.111 35%

BERT ML (Embeddings) Yes 0.289 88% 0.296 88% 0.078 14% 0.096 18%

BioBERT ML (Embeddings) Yes 0.310 86% 0.317 86% 0.080 11% 0.098 14%

Word2Vec (Wikipedia) ML (Word Replacement) Yes 0.387 98% 0.396 100% 0.093 47% 0.107 47%

Word2Vec (PubMed) ML (Word Replacement) Yes 0.417 100% 0.425 100% 0.098 51% 0.111 50%

Word2Vec (Plant Phenotypes) ML (Word Replacement) Yes 0.473 98% 0.482 100% 0.101 55% 0.114 56%

Baseline Baseline No 0.465 74% 0.476 76% 0.082 18% 0.097 39%

TF-IDF (Unigrams) TF-IDF No 0.544 95% 0.554 100% 0.097 36% 0.108 53%

TF-IDF (Unigrams & Bigrams) TF-IDF No 0.540 95% 0.551 98% 0.097 39% 0.107 54%

TF-IDF (Plant Article Unigrams) TF-IDF No 0.555 98% 0.565 100% 0.094 34% 0.106 49%

NOBLE Coder (Precise) Annotation No 0.458 81% 0.467 81% 0.086 8% 0.103 30%

NOBLE Coder (Partial) Annotation No 0.509 98% 0.519 100% 0.090 24% 0.102 45%

NMF (50 Topics) Topic Modeling No 0.489 86% 0.498 88% 0.087 6% 0.099 34%

NMF (100 Topics) Topic Modeling No 0.497 91% 0.508 93% 0.087 14% 0.100 37%

LDA (50 Topics) Topic Modeling No 0.499 98% 0.510 100% 0.086 8% 0.099 32%

LDA (100 Topics) Topic Modeling No 0.499 98% 0.509 100% 0.092 15% 0.104 38%

Doc2Vec (Wikipedia) ML (Embeddings) No 0.519 100% 0.530 100% 0.096 27% 0.107 50%

Doc2Vec (Plants) ML (Embeddings) No 0.558 93% 0.568 95% 0.095 27% 0.104 50%

Word2Vec (Wikipedia) ML (Embeddings) No 0.521 98% 0.532 98% 0.094 15% 0.106 38%

Word2Vec (PubMed) ML (Embeddings) No 0.529 100% 0.540 100% 0.095 19% 0.108 44%

Word2Vec (Plants) ML (Embeddings) No 0.550 98% 0.561 98% 0.099 32% 0.111 53%

BERT ML (Embeddings) No 0.499 100% 0.510 100% 0.096 21% 0.111 43%

BioBERT ML (Embeddings) No 0.517 100% 0.527 100% 0.099 23% 0.113 46%

Word2Vec (Wikipedia) ML (Word Replacement) No 0.556 98% 0.566 100% 0.099 32% 0.110 53%

Word2Vec (PubMed) ML (Word Replacement) No 0.554 100% 0.566 100% 0.098 32% 0.109 51%

Word2Vec (Plant Phenotypes) ML (Word Replacement) No 0.570 95% 0.581 98% 0.098 33% 0.107 49%

GO Curation 0.249 64% 0.140 41%

PO Curation 0.215 17% 0.056 9%

EQs Curation 0.475 76% 0.093 50%
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Table 6.6 Comparing F1 scores for associations and orthologous gene pair relationships.

Associations (F1) Orthologs (F1)

Approach Category Concat All Genes Curated All Genes Curated

Baseline Baseline Yes 0.031 0.041 0.001 0.001

TF-IDF (Unigrams) TF-IDF Yes 0.049 0.068 0.010 0.061

TF-IDF (Unigrams & Bigrams) TF-IDF Yes 0.051 0.072 0.016 0.054

TF-IDF (Plant Article Unigrams) TF-IDF Yes 0.048 0.067 0.008 0.057

NOBLE Coder (Precise) Annotation Yes 0.037 0.049 0.012 0.022

NOBLE Coder (Partial) Annotation Yes 0.042 0.060 0.003 0.016

LDA (50 Topics) Topic Modeling Yes 0.039 0.053 0.002 0.005

LDA (100 Topics) Topic Modeling Yes 0.038 0.053 0.005 0.004

NMF (50 Topics) Topic Modeling Yes 0.042 0.060 0.007 0.013

NMF (100 Topics) Topic Modeling Yes 0.043 0.061 0.006 0.020

Doc2Vec (Wikipedia) ML (Embeddings) Yes 0.033 0.047 0.015 0.029

Doc2Vec (Plants) ML (Embeddings) Yes 0.031 0.041 0.001 0.007

Word2Vec (Wikipedia) ML (Embeddings) Yes 0.042 0.059 0.003 0.003

Word2Vec (PubMed) ML (Embeddings) Yes 0.042 0.060 0.006 0.007

Word2Vec (Plants) ML (Embeddings) Yes 0.052 0.070 0.012 0.065

BERT ML (Embeddings) Yes 0.045 0.059 0.003 0.003

BioBERT ML (Embeddings) Yes 0.046 0.062 0.009 0.020

Word2Vec (Wikipedia) ML (Word Replacement) Yes 0.046 0.065 0.006 0.029

Word2Vec (PubMed) ML (Word Replacement) Yes 0.048 0.066 0.023 0.133

Word2Vec (Plant Phenotypes) ML (Word Replacement) Yes 0.048 0.069 0.018 0.080

Baseline Baseline No 0.044 0.067 0.004 0.008

TF-IDF (Unigrams) TF-IDF No 0.051 0.072 0.006 0.008

TF-IDF (Unigrams & Bigrams) TF-IDF No 0.051 0.072 0.005 0.007

TF-IDF (Plant Article Unigrams) TF-IDF No 0.051 0.073 0.004 0.007

NOBLE Coder (Precise) Annotation No 0.051 0.068 0.004 0.003

NOBLE Coder (Partial) Annotation No 0.048 0.069 0.004 0.005

NMF (50 Topics) Topic Modeling No 0.049 0.070 0.004 0.007

NMF (100 Topics) Topic Modeling No 0.049 0.071 0.005 0.006

LDA (50 Topics) Topic Modeling No 0.047 0.069 0.005 0.006

LDA (100 Topics) Topic Modeling No 0.048 0.069 0.006 0.008

Doc2Vec (Wikipedia) ML (Embeddings) No 0.051 0.071 0.007 0.008

Doc2Vec (Plants) ML (Embeddings) No 0.051 0.071 0.006 0.010

Word2Vec (Wikipedia) ML (Embeddings) No 0.049 0.070 0.006 0.005

Word2Vec (PubMed) ML (Embeddings) No 0.048 0.071 0.007 0.009

Word2Vec (Plants) ML (Embeddings) No 0.053 0.074 0.006 0.008

BERT ML (Embeddings) No 0.048 0.070 0.005 0.008

BioBERT ML (Embeddings) No 0.048 0.071 0.005 0.008

Word2Vec (Wikipedia) ML (Word Replacement) No 0.052 0.073 0.005 0.007

Word2Vec (PubMed) ML (Word Replacement) No 0.052 0.073 0.005 0.006

Word2Vec (Plant Phenotypes) ML (Word Replacement) No 0.050 0.072 0.006 0.007

GO Curation 0.094 0.059

PO Curation 0.048 0.001

EQs Curation 0.063 0.014
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Table 6.7 Comparing F1 scores for pathways for intraspecies and interspecies gene pairs.

Pathways, All Genes (F1) Pathways, Curated (F1)

Approach Category Concat Intraspecies Interspecies Intraspecies Interspecies

Baseline Baseline Yes 0.053 0.051 0.054 0.049

TF-IDF (Unigrams) TF-IDF Yes 0.107 0.067 0.116 0.094

TF-IDF (Unigrams & Bigrams) TF-IDF Yes 0.111 0.069 0.123 0.097

TF-IDF (Plant Article Unigrams) TF-IDF Yes 0.102 0.067 0.112 0.092

NOBLE Coder (Precise) Annotation Yes 0.078 0.055 0.082 0.073

NOBLE Coder (Partial) Annotation Yes 0.088 0.058 0.097 0.072

LDA (50 Topics) Topic Modeling Yes 0.084 0.060 0.089 0.076

LDA (100 Topics) Topic Modeling Yes 0.078 0.060 0.086 0.065

NMF (50 Topics) Topic Modeling Yes 0.092 0.073 0.104 0.097

NMF (100 Topics) Topic Modeling Yes 0.091 0.068 0.104 0.081

Doc2Vec (Wikipedia) ML (Embeddings) Yes 0.069 0.051 0.070 0.062

Doc2Vec (Plants) ML (Embeddings) Yes 0.060 0.055 0.062 0.049

Word2Vec (Wikipedia) ML (Embeddings) Yes 0.089 0.053 0.102 0.067

Word2Vec (PubMed) ML (Embeddings) Yes 0.095 0.056 0.114 0.074

Word2Vec (Plants) ML (Embeddings) Yes 0.105 0.071 0.115 0.107

BERT ML (Embeddings) Yes 0.087 0.052 0.102 0.059

BioBERT ML (Embeddings) Yes 0.089 0.051 0.104 0.060

Word2Vec (Wikipedia) ML (Word Replacement) Yes 0.100 0.063 0.110 0.088

Word2Vec (PubMed) ML (Word Replacement) Yes 0.105 0.062 0.114 0.088

Word2Vec (Plant Phenotypes) ML (Word Replacement) Yes 0.106 0.071 0.115 0.108

Baseline Baseline No 0.091 0.051 0.101 0.049

TF-IDF (Unigrams) TF-IDF No 0.102 0.067 0.109 0.099

TF-IDF (Unigrams & Bigrams) TF-IDF No 0.102 0.069 0.109 0.093

TF-IDF (Plant Article Unigrams) TF-IDF No 0.100 0.066 0.107 0.098

NOBLE Coder (Precise) Annotation No 0.093 0.057 0.106 0.081

NOBLE Coder (Partial) Annotation No 0.096 0.058 0.105 0.069

NMF (50 Topics) Topic Modeling No 0.094 0.054 0.102 0.070

NMF (100 Topics) Topic Modeling No 0.093 0.058 0.103 0.070

LDA (50 Topics) Topic Modeling No 0.091 0.056 0.102 0.069

LDA (100 Topics) Topic Modeling No 0.098 0.070 0.107 0.077

Doc2Vec (Wikipedia) ML (Embeddings) No 0.103 0.056 0.110 0.070

Doc2Vec (Plants) ML (Embeddings) No 0.101 0.063 0.106 0.077

Word2Vec (Wikipedia) ML (Embeddings) No 0.100 0.055 0.108 0.069

Word2Vec (PubMed) ML (Embeddings) No 0.103 0.060 0.112 0.082

Word2Vec (Plants) ML (Embeddings) No 0.106 0.072 0.113 0.104

BERT ML (Embeddings) No 0.104 0.057 0.115 0.069

BioBERT ML (Embeddings) No 0.106 0.057 0.116 0.079

Word2Vec (Wikipedia) ML (Word Replacement) No 0.104 0.070 0.112 0.102

Word2Vec (PubMed) ML (Word Replacement) No 0.104 0.064 0.111 0.090

Word2Vec (Plant Phenotypes) ML (Word Replacement) No 0.103 0.073 0.108 0.108

GO Curation 0.137 0.191

PO Curation 0.057 0.107

EQs Curation 0.097 0.049



www.manaraa.com

109

CHAPTER 7. GENERAL CONCLUSION

7.1 Summary of Findings

The preceding chapters have presented a discussion on how computational methods can be

used to both represent and compare phenotypes in a scalable manner, using both biological

ontologies and natural language processing approaches that account for semantics in free text

descriptions of phenotypes. Chapter 3 and Chapter 4 presents a computational pipeline for

producing EQ statement annotations given input text descriptions of phenotypes, and discuss

how while this set of predicted annotations is comparable to the curated dataset of annotations in

producing similarity values that reflect biology, it does not outperform even simple natural

language processing approaches for representing and comparing the phenotype descriptions. While

this analysis relied on specific relationships such as similarities between anthocyanin biosynthesis

genes to evaluate the performance of each computational or curation approach, Chapter 6

presents an analyses of how these results generalize both across relevant biological relationships

like orthology, protein associations, biochemical pathways, and phenotypes, but also for a variety

of natural language processing approaches for representing and comparing text, ranging from

simple bag-of-words approaches to leveraging transformer models to account for context-specific

semantics. These results determined that orthology and protein associations are not generally

represented through phenotype description similarity in the existing dataset in plants, while

phenotype categorizations are, even when relying solely on computation and not curation. While

phenotype description similarity is not predictive of whether two genes are involved in a shared

pathway in the general case, a percentage of pathways represented in the dataset do contain genes

with similarities that are accounted for purely through computation and without curation. This

analysis also demonstrates how the predictive ability of text-based similarities are improved by

accounting for semantic relationships between words, with both general and domain-specific word
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embedding models. These results informed the creation of a webtool enabling researchers to query

with genes, terms, keywords, and free text descriptions to obtain groups of plant genes with

related phenotypes, and that chapter presents examples and illustrations of its utility.

7.2 Future Work

The work described here was primarily focused on characterizing the utility of the existing

dataset of phenotype descriptions in plants, (i.e., What biological relationships can we recover

with it? What techniques are most effective in representing it computationally?). As a result, the

future of this area of research will largely depend on how this dataset is expanded. Because of the

utility we have demonstrated for computing on and querying with text descriptions in comparison

to ontology term annotations, we advocate for community databases to consider including this

datatype as an additional field when generating annotations, or for including unprocessed text

from papers as a short-term solution while high-quality datasets of annotations are curated for

this data. In addition, extracting phenotype descriptions from academic papers is an active area

of research that has the potential to greatly expand this dataset in plants (e.g., Collier et al.

(2015); Xing et al. (2018)). As the dataset is grown through any one of these developments, the

types of computational approaches that are most applicable for representing and comparing these

descriptions will likely change from what is described here, and tools that enable researchers to

work with this data will of course require corresponding improvements. Semantic similarity

between free text phenotype descriptions in general also has applications outside of the type of

mutant phenotype datasets discussed here. As described in Chapter 5, this research forms one of

the foundations of a pipeline in progress for using voice recordings from researchers in the field to

extract plant traits that can be defined as semantic clusters and related to genotypes as an input

to genome-wide association studies (discussed in Yanarella et al. (2020)). This is the work of

Colleen Yanarella (Lawrence-Dill Lab, Iowa State University), and is a promising direction for the

field of comparing phenotype descriptions computationally in plants.
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